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Abstract

The introduction of connected and automated vehicles (CAVs) is expected to reduce congestion, enhance safety, and improve
traffic efficiency. Numerous research studies have focused on controlling pure CAV platoons in fully connected automated traffic,
as well as single or multiple CAVs in mixed traffic with human-driven vehicles (HVs). While cruise control designs for CAVs have
been proposed to stabilize car-following dynamics, few studies have addressed their impact on safety, particularly the trade-offs
between stability and safety. In this paper, we study how cooperative control strategies for CAVs can be designed to enhance
the safety and stability of mixed traffic, under various levels of connectivity and automation. Considering mixed traffic where
a pair of CAVs travels amongst HVs, we design cruise control strategies for the head and the tail CAVs to stabilize traffic via
cooperation and, possibly, by also leveraging connectivity with HVs in-between. We introduce the definition of CAV safety, HV
safety and platoon safety, and investigate the real-time safety impact of the CAV controllers using control barrier functions (CBFs).
Safety-critical control strategies are then derived by incorporating CBF safety constraints for online computation. Both theoretical
and extensive numerical analysis have been conducted to explore the effect of CAV cooperation and HV connectivity on the
stability and safety of mixed traffic. The cooperative strategy for CAV control improves stability, and potential safety issues are
successfully resolved with the proposed safety-critical design. Moreover, connecting CAVs with the HVs between them offers
additional benefits: if HVs are connected to the tail CAV, traffic stability is further improved compared to when they are connected
only to the head CAV; whereas if HVs are connected to the head CAV, their safety can be enhanced.

Index Terms

Connected and automated vehicle, mixed traffic, stability analysis, traffic safety

I. INTRODUCTION

The integration of automation and connectivity in intelligent vehicles has been envisioned to improve road transportation
efficiency, fuel consumption, and driving safety. Many studies have focused on the control of connected and automated vehicles
(CAVs) to explore their potential for improving traffic under different penetration rates ranging from a single automated vehicle
to fully connected automated traffic systems [14], [33]. Before fully automated and connected traffic becomes reality, there
will still be an inevitable transition period of mixed traffic systems, that are characterized by frequent interactions between
CAVs and conventional human-driven vehicles (HVs). In mixed traffic, the cooperative control of CAVs remains a significant
challenge. Especially, the safety impact of cooperative CAV control strategies on surrounding vehicles needs to be addressed.
In this paper, we investigate this problem for a mixed vehicle platoon that includes a pair of cooperative CAVs traveling
amongst (possibly connected) HVs as shown in Fig. 1. We explore in detail how coordination between CAVs and feedback
from surrounding connected HVs influence the effectiveness of control strategies in achieving safety and smoothness of mixed
traffic, under various penetrations of connectivity and automation.

A. Stability and safety by controlling a single CAV

Automated vehicles have the potential to stabilize traffic by generating smooth driving motions in car-following scenarios.
Speed perturbations are attenuated in the process of propagating from the leader vehicle to the followers [18], [41], [51],
[58]. To achieve smooth motion, controllers have been designed for automated vehicles under different penetration rates of
CAVs in traffic and different accessibility of surrounding traffic information. In adaptive cruise control (ACC), the automated
vehicle is controlled based on data measured via onboard sensors, that include its speed, the preceding vehicle’s speed, and
the gap (distance) ahead [20]. The performance of automated vehicles can be further improved by using additional information
from vehicle-to-vehicle (V2V) connectivity. CAVs equipped with communication devices may obtain data from downstream or
upstream connected HVs that are also equipped with communication devices. This is leveraged by connected cruise control [35],
which enables CAVs to respond not only to the immediate preceding vehicle but also to other connected HVs downstream.
Field experiments in [25] have shown that this additional information from the downstream traffic helps the CAV to drive
smoother compared to ACC-only vehicles, which improves traffic stability. Connectivity between the CAV and upstream HVs
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can also improve traffic stability by the notion of leading cruise control [46]. As the CAV responds to connected HVs upstream,
the stability of the upstream traffic is further enhanced.

In order to implement controllers for CAVs in practice, safety must be guaranteed [49]. In this paper, we focus on longitudinal
control, and thus safety refers to eliminating the risk of rear-end collisions. Longitudinal controller design exhibits a trade-off
between stability and safety [30]. For example, when the vehicle ahead of the CAV decelerates, a smaller deceleration of
the CAV leads to smoother traffic but also a higher risk of collisions. To ensure safety for the controlled dynamical systems,
representative control techniques include model predictive control (MPC) [5], reachability analysis [2], [55], and control barrier
functions (CBFs) [4], [48]. MPC typically minimizes stability-related indices such as speed perturbation or energy consumption
while safety is usually considered as constraint over the prediction horizon. CBFs, on the other hand, directly give a constraint
on the controller to guarantee safety based on the current system state. Therefore, CBFs avoid the computation burden from
the prediction of future dynamics which could possibly be inaccurate. Furthermore, CBFs can be integrated with pre-designed
nominal controllers. In particular, safety-critical controllers have been developed that minimize the deviation from the nominal
controller while satisfying the CBF safety constraint [3], [4]. In this approach, CBF acts as a safety filter that only alters the
nominal controller when the system is in danger of violating safety.

Many recent results have employed CBFs to enhance traffic safety. CBFs have been integrated with adaptive cruise control
in [4] to ensure the safety of automated vehicles. CBF-based safety filters have also been developed for connected cruise
control in [23], [32] to avoid collisions for a CAV that is connected to HVs downstream. Furthermore, CBF constraints have
been designed for safety-critical traffic control in [54] to ensure safety for both the CAV and following HVs when the CAV
is connected to HVs upstream. In this paper, we develop a novel CBF framework to evaluate the stability and safety impact
of cooperative CAV control strategies on the upstream and downstream traffic. More importantly, we analyze the trade-offs
between stability and safety, and in particular, how connectivity of HVs, ACC and cooperation between CAVs play a role in
it. The safety-critical control designs proposed in this paper achieve stability and safety simultaneously.

B. Cooperative control of multiple CAVs

Besides analyzing the effect of a single automated vehicle on traffic, research has also shown that communication and
coordination between multiple CAVs may further improve the overall performance of the traffic system [15], [17], [36], [42].
Cooperative controllers have been considered for various traffic scenarios, such as cooperative cruise control and platooning [27],
[45], cooperative merging at highway on-ramps [38], [47], cooperative lane changing [52], [56], and cooperative eco-driving
at signalized and unsignalized intersections [6], [10], [22]. In longitudinal control, an important case is when multiple adjacent
CAVs follow each other and form a CAV platoon. Related research has revealed the positive improvement brought by such
CAV platoons on traffic throughput [26], [57], energy [28], stability [59], mobility [31], and safety [50].

To unleash the potential of CAV platoons, however, it is crucial to design controllers that effectively coordinate CAVs.
A prevailing approach is cooperative adaptive cruise control (CACC), which is an extension of ACC [11], [12]. Compared
with ACC, CACC allows the CAVs within the platoon to have a smaller gap, and improves traffic stability, efficiency, and
throughput [9]. As for safety, CACC with well-designed controller gains also achieves collision-free driving for CAVs [8].

Despite their benefits, CAV platoons may be difficult to implement in practice, since full penetration of automation and
connectivity is required within the platoon. As opposed, the penetration rate of CAVs is typically low in current traffic conditions.
With low penetration, a more common scenario is mixed vehicle platoons consisting of both CAVs and HVs as shown in Fig. 1.
To coordinate CAVs that are separated by HVs, controllers have been designed via multiple tools, such as MPC [19], [37],
feedback control [21], and reinforcement learning [39]. These studies have shown that, compared with controlling the two CAVs
separately, cooperative strategies further improve mixed traffic efficiency and stability. For safety, MPC-related controllers [19],
[37] include CAV safety conditions as constraints in the optimization problem, while other controllers fail to provide safety
guarantees.

The above research considers the case where HVs are not connected, and thus, feedback about their motion may not be
available to the CAVs. Yet, as it has been discussed above for the control of a single CAV, the traffic efficiency [13], [35],
[40], [46] and safety [54] can be further improved via connecting HVs to CAVs. For the coordination of multiple CAVs, it
remains unexplored how additional connectivity to HVs affects traffic stability and safety. On the other hand, scarce studies
have focused on designing CAV control strategies to guarantee the safety of surrounding HVs in mixed traffic, which will be
discussed in our paper. We design safety-critical controllers for a cooperating pair of CAVs that stabilizes the mixed traffic
while considering both CAV and HV safety, and we analyze how the connection of HVs can be leveraged to improve the
stability and safety of the system.

C. Contribution

In this paper, we consider a mixed vehicle platoon shown in Fig. 1 that contains HVs enclosed by two CAVs. The CAVs are
equipped with communication devices and thus can obtain information about each other’s state, while some of the middle HVs
may also have the ability for V2V communication. By leveraging the information from connectivity, we design controllers for
the pair of CAVs to stabilize the motion of the mixed vehicle platoon while maintaining safety of the CAVs and the middle
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Fig. 1: Safety-critical stabilization of mixed traffic via a pair of CAVs. The head CAV follows a downstream head HV and
leads 𝑁 following HVs, while the tail CAV follows the last HV in this vehicle platoon. We design controllers for the CAVs
to alleviate congestion and also maintain formal safety guarantees considering the mixed vehicle platoon shaded in grey.

HVs. We first design a nominal stabilizing controller consisting of three parts: adaptive cruise control, feedback of middle HV
states (if there are connected HVs), and CAV coordination. Then, we discuss safety against rear-end collisions, and propose
safety notions consdiering the CAVs, the middle HVs, and the overall platoon. We perform safety analysis for the nominal
controller, and then design CBF-based safety filters to guarantee safety for CAVs, HVs, and the overall platoon, respectively.
Finally, we conduct numerous simulations to validate our safety-critical cooperative CAV controllers and analyze their impact
on stability and safety, sensitivity to penetration rate of CAVs, and robustness to uncertain human driver behaviors.

The main contribution of this paper lies in proposing a methodological cooperative control framework for pairing CAVs to
guarantee the safety of mixed traffic, including CAVs safety, HVs safety and platoon safety. In particular, we analyze how
the connection of HVs affects stability and safety, and show that if an HV is equipped with V2V communication devices, the
CAVs can simultaneously enhance the safety of the HV and the smoothness of the following traffic. In our previous works [21],
[53], [54], we obtained preliminary results on using CBFs to enhance traffic safety. The impact of cooperative strategies on
the trades-offs between stability and safety has not yet been explored, especially for mixed traffic. More importantly, we
leverage the connection of HVs to improve the safety of mixed traffic systems by establishing CBF safety constraints for the
pair of CAVs, HVs, and platoon. The practical impact of our proposed control strategies is extensively studied across various
safety-critical scenarios, considering different penetration rates of CAVs and accounting for uncertain human driver behaviors.

The remainder of this paper is organized as follows. We formulate the model of the mixed vehicle platoon in Section II.
We establish a nominal controller and address stability in Section III. In Section IV, we conduct safety impact analysis and
propose cooperative control designs that guarantee the safety of the CAVs, HVs, and platoon based on CBFs. We conduct
numerical simulations in Section V to validate the designed controller. We analyze controller performance from various aspects
in Section VI, including controller parameter selection and robust stability and safety against unmodeled HV dynamics.

II. PROBLEM FORMULATION

We consider a mixed vehicle platoon, shown in Fig. 1, that includes two CAVs and 𝑁 HVs between them. The head CAV
(H-CAV) follows an HV that leads the vehicle platoon and may cause velocity disturbance, while the tail CAV (T-CAV) follows
the last HV (HV-𝑁) in the platoon. The two CAVs can measure their own gap, their own speed, and the speed of their preceding
vehicle by onboard sensors (such as radar, lidar, or camera). Furthermore, the head and tail CAVs share information of each
other’s real-time position and speed via V2V communication. The states of the middle HVs are available to the CAVs if they
are equipped with communication devices (i.e., they are connected HVs). We will discuss how to design safe cooperative CAV
control strategies from null connectivity to full connectivity of middle HVs. The considered vehicle chain can be viewed as one
module in more complex mixed traffic systems. If there is a long vehicle chain with multiple CAVs, the whole vehicle chain
can be split into several sub-chains, each having the structure as in Fig. 1 and being controlled by our proposed controller.

The state variable of the mixed traffic system x(𝑡) ∈ R𝑛 with 𝑛 = 2𝑁 + 4 is defined as:

x = [ 𝑠H, 𝑣H︸︷︷︸
head CAV

, 𝑠1, 𝑣1, · · · , 𝑠N, 𝑣N︸               ︷︷               ︸
HVs

, 𝑠T, 𝑣T︸︷︷︸
tail CAV

]⊤ ∈ R𝑛, (1)

with 𝑠H (𝑡) ∈ R being the gap between the head CAV and its leader HV, 𝑣H (𝑡) ∈ R being the speed of the head CAV, 𝑠T (𝑡) ∈ R
and 𝑣T (𝑡) ∈ R being the gap and speed of the tail CAV, 𝑠𝑖 (𝑡) ∈ R and 𝑣𝑖 (𝑡) ∈ R being the gap and speed of HV-𝑖 with
𝑖 ∈ {1, . . . , 𝑁}. Meanwhile, the leader HV’s speed 𝑣d (𝑡) ∈ R is an external disturbance for the vehicle platoon. We design a
control input 𝑢H (𝑡) ∈ R for the head CAV and a control input 𝑢T (𝑡) ∈ R for the tail CAV. The controller is represented by:

u =

[
𝑢H

𝑢T

]
∈ R2. (2)

The dynamics of the mixed-traffic vehicle platoon are governed by:

¤x = 𝑓 (x, 𝑣d) + 𝑔(x)u + d, (3)
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with 𝑓 : R𝑛×R → R𝑛, 𝑔 : R𝑛 → R𝑛×2, and d(𝑡) ∈ R𝑛 given below according to the models used for capturing the car-following
motions of CAVs and HVs. We describe the longitudinal motion of HVs and two CAVs as follows.

HV dynamics: the car-following model of HV-𝑖 is given by:

¤𝑠𝑖 = 𝑣𝑖−1 − 𝑣𝑖 , (4)
¤𝑣𝑖 = 𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖) + 𝑑𝑖 . (5)

For HV-1, since it follows the head CAV, we use the notation 𝑣0 = 𝑣H. The acceleration function 𝐹𝑖 : R3 → R models the
longitudinal driving behaviors of HV-𝑖 based on its gap 𝑠𝑖 , speed 𝑣𝑖 , and speed difference ¤𝑠𝑖 . Specifically, function 𝐹𝑖 is
a generic acceleration function that allows the adoption of many commonly-used car-following models such as the optimal
velocity model (OVM) [7] or the intelligent driver model (IDM) [43]. In practice, human drivers often present more complex
car-following behaviors that are difficult to describe accurately by simple models, hence we use 𝑑𝑖 (𝑡) ∈ R to represent the
unmodeled HV dynamics as an additive disturbance.

CAV dynamics: the head CAV follows an HV, and we design the driving strategy of H-CAV as a control input based on:

¤𝑠H = 𝑣d − 𝑣H, (6)
¤𝑣H = 𝑢H. (7)

In analogy, the gap 𝑠T and speed 𝑣T of the tail CAV are governed by:

¤𝑠T = 𝑣𝑁 − 𝑣T, (8)
¤𝑣T = 𝑢T, (9)

where 𝑢T controls the acceleration of the T-CAV.
For the mixed vehicle platoon controlled by the two cooperative CAVs, we thus have the system model as (3) with:

𝑓 (x, 𝑣d) =



𝑓H (x, 𝑣d)
𝑓1 (x)
...

𝑓N (x)
𝑓T (x)


∈ R𝑛, 𝑓H (x, 𝑣d) =

[
𝑣d − 𝑣H

0

]
, 𝑓𝑖 (x) =

[
𝑣𝑖−1 − 𝑣𝑖

𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , 𝑣𝑖−1 − 𝑣𝑖)

]
, 𝑓T (x) =

[
𝑣𝑁 − 𝑣T

0

]
,

𝑔(x) =
[
𝑔H 𝑔T

]
∈ R𝑛×2, 𝑔H =



0
1
0
...

0


∈ R𝑛, 𝑔T =



0
...

0
0
1


∈ R𝑛, d =

[
0 0 0 𝑑1 · · · 0 𝑑𝑁 0 0

]⊤ ∈ R𝑛.

(10)

In the following parts, we first consider the case in which the human driver’s model is fully known, i.e., 𝑑𝑖 = 0 in (5). In
practice, if there is enough historical data and the current traffic presents a similar driving condition as historical data, we
can get an accurate HV model with negligible error, which means we can take 𝑑𝑖 = 0. We design controllers and analyze the
stability and safety performance for 𝑑𝑖 = 0. Then we analyze the robustness of the controller with an inaccurate driver’s model,
i.e., 𝑑𝑖 ≠ 0.

III. COOPERATIVE STABILIZING CAV CONTROLLERS

In this section, we design stabilizing nominal controllers for the two CAVs so that stable motion of the vehicle platoon is
achieved for two different notions of stability, i.e. plant stability and head-to-tail string stability.

A. Nonlinear cooperative control design for the head and tail CAVs

The nominal CAV controllers are designed to respond to the state x of the traffic and the speed 𝑣d of the leader HV:

𝑢H = 𝑘H,n (x, 𝑣d),
𝑢T = 𝑘T,n (x),

(11)

where subscript n stands for nominal, and the expressions of the nominal head and tail CAV controllers, 𝑘H,n : R𝑛 × R → R
and 𝑘T,n : R𝑛 → R, are chosen as follows. The controller of each CAV is designed to consist of three parts: (i) adaptive cruise
control (ACC) based on the preceding vehicle; (ii) state feedback of the middle HVs that are connected to the CAV (if there
are any); and (iii) cooperative response to the other CAV. If there is no connectivity between the CAV pair and HVs, the
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control strategy of the two CAVs will fall back to the simple ACC. We denote the set of middle HVs that are connected to
the head CAV as NH ⊆ {1, 2, . . . , 𝑁}. The controller of the H-CAV is given by:

𝑘H,n (x, 𝑣d) = 𝛼H (𝑉H (𝑠H) − 𝑣H) + 𝛽H,d (𝑊 (𝑣d) − 𝑣H)︸                                          ︷︷                                          ︸
Adaptive cruise control

+∑
𝑖∈NH 𝛽H,𝑖 (𝑊 (𝑣𝑖) − 𝑣H)︸                        ︷︷                        ︸

HV feedback

+ 𝛽H,T (𝑊 (𝑣T) − 𝑣H)︸                ︷︷                ︸
CAV cooperation

. (12)

The first two terms are the response to the preceding vehicle, the third term is the response to the middle HVs (that is omitted
if no HVs are connected to the head CAV, i.e., NH = ∅), and the fourth term is the response to the tail CAV. We propose this
controller by extending the design in [21] with response to the middle HVs. Parameters 𝛽H,d, 𝛽H,𝑖 , and 𝛽H,T are the control
gains with respect to the speeds of the head HV, middle HVs, and the tail CAV, respectively. The function 𝑊 : R → R is
defined as:

𝑊 (𝑣) = min{𝑣, 𝑣max}, (13)

with 𝑣max being the maximum speed. The control gain 𝛼H adjusts the head CAV’s acceleration with respect to the desired
speed 𝑉H (𝑠H) based on the gap 𝑠H. Function 𝑉H : R → R is given below.

The tail CAV’s acceleration is controlled as:

𝑘T,n (x) = 𝛼T (𝑉T (𝑠T) − 𝑣T) + 𝛽T,𝑁 (𝑊 (𝑣𝑁 ) − 𝑣T)︸                                           ︷︷                                           ︸
Adaptive cruise control

+∑
𝑖∈NT 𝛽T,𝑖 (𝑊 (𝑣𝑖) − 𝑣T)︸                        ︷︷                        ︸

HV feedback

+ 𝛽T,H (𝑊 (𝑣H) − 𝑣T)︸                ︷︷                ︸
CAV cooperation

, (14)

where the meaning of each term in (14) is analogous to that in (12). In controller (14) NT ⊆ {1, 2, . . . , 𝑁 − 1} denotes the set
of middle HVs that are connected to the tail CAV excluding the preceding HV-𝑁 (and the third term is omitted if no HVs are
connected to the tail CAV, i.e., NT = ∅). Parameters 𝛼T, 𝛽T,𝑁 , 𝛽T,𝑖 , and 𝛽T,H are the corresponding control gains, while 𝑉T (𝑠T)
is a desired speed based on the gap 𝑠T.

The gap-dependent desired speeds 𝑉H and 𝑉T can be designed for each CAV separately. For instance, they may be chosen
differently by vehicle manufactures. The upcoming analysis is conducted for general 𝑉H and 𝑉T functions. For numerical
examples, we will use the same range policy:

𝑉H (𝑠) = 𝑉T (𝑠) =


0, 𝑠 ≤ 𝑠st,

𝜅(𝑠 − 𝑠st), 𝑠st < 𝑠 < 𝑠go,

𝑣max, 𝑠 ≥ 𝑠go,

(15)

where 𝑠st and 𝑠go are the standstill gap and free-driving gap, respectively, and 𝜅 = 𝑣max/(𝑠go − 𝑠st).
With the controller (11), the dynamics (3) of the mixed vehicle platoon becomes:

¤x = 𝐹 (x, 𝑣d) = 𝑓 (x, 𝑣d) + 𝑔H𝑘H,n (x, 𝑣d) + 𝑔T𝑘T,n (x), (16)

where 𝐹 (x, 𝑣d) represents the car-following dynamics of the HV model and the proposed CAV controllers. Next, we analyze
these dynamics, and we design the control gains denoted by 𝛼 and 𝛽 for the two CAVs such that their controllers achieve
stable motion for the vehicle platoon. The linear stability is analyzed. We provide stability charts that identify the control gains
for stability guarantees.

B. Stability analysis

We analyze the stability by considering the behavior of the mixed-autonomy traffic system (16) around its equilibrium. At
the equilibrium, each vehicle in the vehicle platoon has the same constant speed 𝑣∗ and keeps a constant gap. The equilibrium
gap for each HV, 𝑠∗

𝑖
, is given by 𝐹𝑖 (𝑠∗𝑖 , 𝑣∗, 0) = 0. For the H-CAV and T-CAV, their equilibrium gaps 𝑠∗H and 𝑠∗T are given by

𝑉H (𝑠∗H) = 𝑣∗ and 𝑉T (𝑠∗T) = 𝑣∗, respectively. For the system (16), the equilibrium state is

x∗ = [𝑠∗H, 𝑣∗, 𝑠∗1, 𝑣
∗, · · · , 𝑠∗N, 𝑣∗, 𝑠∗T , 𝑣∗]⊤, (17)

and it satisfies 𝐹 (x∗, 𝑣∗) = 0.
We analyze stability by considering that speeds and gaps fluctuate around their equilibrium value. The perturbations are

described by: 𝑣̃d = 𝑣d − 𝑣∗, 𝑠H = 𝑠H − 𝑠∗, 𝑣̃H = 𝑣H − 𝑣∗, 𝑠T = 𝑠T − 𝑠∗T , 𝑣̃T = 𝑣T − 𝑣∗, 𝑠𝑖 = 𝑠𝑖 − 𝑠∗
𝑖
, and 𝑣̃𝑖 = 𝑣𝑖 − 𝑣∗, which are written

compactly as:
x̃(𝑡) = x(𝑡) − x∗, 𝑣̃d = 𝑣d − 𝑣∗. (18)

By linearizing the mixed traffic system (16), the evolution of these perturbations is given in the form:

¤̃x = 𝐴x̃ + 𝐵𝑣̃d. (19)

This linearized system, with the expressions of 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛, is derived in Appendix A as (A.7). We consider two
types of stability for the linearized system: plant stability and head-to-tail string stability.
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Definition 1 (Plant stability). System (19) is plant stable if it is asymptotically stable for 𝑣̃d (𝑡) = 0.

Definition 2 (Head-to-tail string stability). System (19) is head-to-tail string stable if
√︃∫ ∞

0 𝑣̃T (𝑡)2 d𝑡 <
√︃∫ ∞

0 𝑣̃d (𝑡)2 d𝑡 for any
square integrable 𝑣̃d and x̃(0) = 0.

Remark 1 (Plant and string stability). Plant stability refers to the internal dynamics of the system when the external disturbance
is 𝑣̃d = 0, while head-to-tail string stability describes the system’s response to the external disturbance 𝑣̃d when the initial state
is x̃(0) = 0. With respect to their implications for the mixed traffic system, plant stability means that, when the downstream
traffic travels at the equilibrium speed 𝑣∗, the platoon will approach the equilibrium state x∗ associated with the same speed
𝑣∗ and constant spacing for each vehicle. Head-to-tail string stability, on the other hand, requires that when the leader HV has
some speed perturbation 𝑣̃d the tail CAV will experience a smaller perturbation 𝑣̃T in its speed, i.e., the speed perturbations
in downstream traffic are attenuated by the vehicle platoon and the traffic becomes smoother. For traffic systems, head-to-tail
string stability is a more restrictive performance requirement than plant stability.

We analyze plant and head-to-tail string stability using the head-to-tail transfer function defined as:

𝐺 (𝑠) = 𝑉T (𝑠)
𝑉d (𝑠)

, (20)

with 𝑉T (𝑠) and 𝑉d (𝑠) being the Laplace transforms of the speed perturbations of the leader HV, 𝑣̃d, and the tail CAV, 𝑣̃T,
respectively. The head-to-tail transfer function 𝐺 (𝑠) of the linearized system (19) is derived in Appendix A. Its final expression
is:

𝐺 (𝑠) = 𝑁 (𝑠)
𝐷 (𝑠) , (21)

where the numerator is given by:

𝑁 (𝑠) = (𝛽H,d𝑠 + 𝜉H)
(
𝛽T,H𝑠𝑃0 + (𝛽T,N𝑠 + 𝜉T)𝑃N +

∑︁
𝑖∈NT

𝛽T,𝑖𝑠𝑃𝑖

)
, (22)

with 𝜉H = 𝛼H𝑉
′
H (𝑠∗H), 𝜉T = 𝛼T𝑉

′
T (𝑠∗T), while the denominator is:

𝐷 (𝑠) =
(
(𝑠2 + 𝜂H𝑠 + 𝜉H)𝑃0 −

∑︁
𝑖∈NH

𝛽H,𝑖𝑠𝑃𝑖

)
(𝑠2 + 𝜂T𝑠 + 𝜉T) − 𝛽H,T𝑠

(
𝛽T,H𝑠𝑃0 + (𝛽T,N𝑠 + 𝜉T)𝑃N +

∑︁
𝑖∈NT

𝛽T,𝑖𝑠𝑃𝑖

)
, (23)

with 𝜂H = 𝛼H + 𝛽H,d +
∑

𝑖∈NH 𝛽H,𝑖 + 𝛽H,T, 𝜂T = 𝛼T + 𝛽T,N +
∑

𝑖∈NT 𝛽T,𝑖 + 𝛽T,H, and:

𝑃0 =

𝑁∏
𝑗=1

(𝑠2 + 𝑎 𝑗2𝑠 + 𝑎 𝑗1), 𝑃𝑖 =

𝑖∏
𝑗=1

(𝑎 𝑗3𝑠 + 𝑎 𝑗1)
𝑁∏

𝑗=𝑖+1
(𝑠2 + 𝑎 𝑗2𝑠 + 𝑎 𝑗1), 𝑃𝑁 =

𝑁∏
𝑗=1

(𝑎 𝑗3𝑠 + 𝑎 𝑗1), (24)

where 𝑎 𝑗1 =
𝜕𝐹𝑗

𝜕𝑠 𝑗
(𝑠∗

𝑗
, 𝑣∗, 0), 𝑎 𝑗2 =

𝜕𝐹𝑗

𝜕 ¤𝑠 𝑗 (𝑠
∗
𝑗
, 𝑣∗, 0) − 𝜕𝐹𝑗

𝜕𝑣 𝑗
(𝑠∗

𝑗
, 𝑣∗, 0), 𝑎 𝑗3 =

𝜕𝐹𝑗

𝜕 ¤𝑠 𝑗 (𝑠
∗
𝑗
, 𝑣∗, 0).

Note that the expressions in (24) represent the dynamics (4)-(5) of HVs. Meanwhile, the formulas in (22) and (23) are
determined by the CAV controllers in (12) and (14), hence they depend on the 𝛼 and 𝛽 controller gains. Using the head-to-tail
transfer function 𝐺 (𝑠), we provide the conditions on these controller gains to stabilize the linearized system (19). This implies
local stability for the nonlinear system (16), i.e., when the system state and disturbance are within a small region around the
equilibrium. The stability conditions are summarized in Theorem 1.

Theorem 1. System (19) is plant stable if the controller gains 𝛼H, 𝛽H,d, 𝛽H,𝑖 , 𝛽H,T, 𝛼T, 𝛽T,N, 𝛽T,𝑖 , 𝛽T,H are chosen such that all
solutions of 𝐷 (𝑠) = 0 have negative real parts, where 𝐷 is given in (23). The system is head-to-tail string stable if |𝐺 (j𝜔) | < 1
holds for all 𝜔 > 0, where j2 = −1 and 𝐺 is given in (21)-(23).

C. Stabilizing control gains

Here we use Theorem 1 to determine the range of controller gains that stabilize the system, and we plot this range as
stability charts in the (𝛽H,T, 𝛽T,H) plane of controller gains. The corresponding stability boundaries (that bound the region of
stabilizing controller gains) are given as follows.

The mixed traffic system is at the plant-stability boundary when 𝐷 (𝑠) = 0 has a real root at the origin, i.e., 𝑠 = 0, or has a
complex conjugate pair of roots 𝑠 = ±j𝜔 with 𝜔 > 0. For these two cases, the stability boundaries are given in Corollary 1.

Corollary 1 (Plant stability boundary). The plant stability boundaries of system (19) are given by:

𝐷 (0) = 0. (25)
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and:
Re(𝐷 (j𝜔)) =0,
Im(𝐷 (j𝜔)) =0,

(26)

with Re(·) and Im(·) being the real and imaginary parts of a complex number, and 𝐷 is given in (23).

Based on Theorem 1, the head-to-tail string stability condition is |𝐺 (j𝜔) | < 1 for all 𝜔 > 0. We note that |𝐺 (0) | = 1.
Therefore, there are two cases for the string stability boundaries [21]. In the first case, |𝐺 (j𝜔) | gets its maximum value at
𝜔 = 0. In the second case, |𝐺 (j𝜔) | = 1 for some positive 𝜔 > 0. We provide the string stability boundaries for these two cases
in Corollary 2.

Corollary 2 (Head-to-tail string stability boundary). The head-to-tail string stability boundaries of system (19) are given by:

lim
𝜔→0+

1
𝜔2

(
|𝐷 (j𝜔) |2 − |𝑁 (j𝜔) |2

)
= 0, (27)

and by a family of curves parameterized by the wave number 𝜃 ∈ [0, 2𝜋), obtained from:

𝐺 (j𝜔) = 𝑒−j𝜃 , (28)

which is equivalent to:

Re(𝐷 (j𝜔))−Re(𝑁 (j𝜔)) cos 𝜃+Im(𝑁 (j𝜔)) sin 𝜃 = 0,
Im(𝐷 (j𝜔))−Re(𝑁 (j𝜔)) sin 𝜃−Im(𝑁 (j𝜔)) cos 𝜃 = 0.

(29)

Here 𝐺, 𝑁 , and 𝐷 are given in (21)-(23).

Equations (25)-(26) and (27)-(29) define the plant and string stability boundaries, respectively. Note that the left-hand sides
of these equations depend on the control gains like 𝛽H,T and 𝛽T,H. Thus, these equations define curves in the space of controller
gains such as in the (𝛽H,T, 𝛽T,H) plane. By plotting these curves, we create stability charts that identify stabilizing gains.

As a numerical example, we consider a vehicle platoon of 𝑁 = 4 middle HVs. For the CAV spacing policy in (15), we use
𝑠st = 2 m, 𝑠go = 40 m, and 𝑣max = 40 m/s. We set the HV dynamics as the optimal velocity model:

𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖) = 𝑎(𝑉𝑖 (𝑠𝑖) − 𝑣𝑖) + 𝑏 ¤𝑠𝑖 , (30)

where 𝑎 > 0 and 𝑏 > 0 reflect the human driver’s reaction to match its speed 𝑣𝑖 to the desired speed 𝑉𝑖 (𝑠𝑖) and the preceding
vehicle’s speed 𝑣𝑖−1, respectively. For the human drivers, we take the desired speed 𝑉𝑖 (𝑠) also in the form of (15), but with 𝑠st
and 𝑠go calibrated from trajectories in the NGSIM dataset [16]. We calibrate the model parameters for HVs as 𝑎 = 0.16 s−1,
𝑏 = 0.61 s−1, 𝑠st = 1.9 m, and 𝑠go = 46.3 m. We set the equilibrium speed of the vehicle platoon as 𝑣∗ = 20 m/s, which gives
the equilibrium gap for the HVs as 𝑠∗

𝑖
= 24 m and for the two CAVs as 𝑠∗H = 𝑠∗T = 21 m.

Fig. 2 presents stability charts that indicate the stability boundaries and the range of cooperative CAV controller gains in
the (𝛽H,T, 𝛽T,H) domain that leads to plant and head-to-tail string stability.

Remark 2 (Stability impact of ACC mode only). Fig. 2(a) considers the case where the middle HVs are not connected. In
this case, if the two CAV are also not connected (i.e., 𝛽H,T = 0, 𝛽T,H = 0), then the two CAVs execute ACC, and the vehicle
platoon is string unstable. This means that when the head HV has some speed perturbations, the tail CAV will experience a
larger speed perturbation through propagation along the vehicle platoon.

Remark 3 (Stability impact of CAV cooperation). In Fig. 2(a), by connecting the two CAVs and using feedback gains (𝛽H,T,
𝛽T,H) within the string stable region shaded in red, the mixed vehicle platoon becomes head-to-tail string stable. This is possible
only if the tail CAV’s controller responds to the head CAV (i.e., string stability requires 𝛽T,H ≠ 0), while the response of the
head CAV to the tail CAV is not necessary (i.e., there exist string stable gains even when 𝛽H,T = 0). As Fig. 2(a) shows,
by choosing proper CAV cooperation feedback gains (𝛽H,T, 𝛽T,H), the system is already head-to-tail string stable without HV
connection. This highlights that the proposed controller stabilizes traffic even in the most challenging case where all HVs are
not equipped with communication devices.

If HVs are connected and middle HV feedback is included, the stability region is further enlarged as in Fig. 2(b). In this
case, smaller controller gains can be chosen, which may reduce accelerations and increase passenger comfort. Furthermore, if
the tail CAV includes feedback from middle HVs, as in Fig. 2(b), then the system can be rendered string stable even if the
two CAVs are not connected (i.e., 𝛽H,T = 0 and 𝛽T,H = 0). This shows that for string stability, the tail CAV should include
feedback from its downstream traffic, either from the head CAV or the middle HVs. Fig. 2(c) shows how the stability region
is affected when the head CAV includes middle HV feedback in its controller. Similar to Fig. 2(a), the system can be string
stable even with 𝛽H,T = 0 if 𝛽T,H is properly chosen, i.e., the head CAV can ignore tail CAV’s feedback but not vice versa.

Remark 4 (Stability impact of connecting HVs). Fig. 2(d) compares the string stability boundaries from Fig. 2(a)-(c) that
correspond to different communication topologies of HV connection. Yellow color indicates when the CAVs are not connected
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(a) No HV connection
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-1 -0.5 0 0.5 1
-H;T

-0.5

0

0.5

1

1.5

-
T
;H

Look ahead

Look behind

(d) Comparison of stability region under different HV communication topology: (a) yellow, (b) red, and (c) green

Fig. 2: Stability charts in the (𝛽H,T, 𝛽T,H) space of control gains. Grey areas and red areas represent plant stability and head-
to-tail string stability, respectively. The white are represents unstable region. In panel (a), the middle HVs are not connected
and the CAVs do not respond to them. In panel (b), HV 1, HV 2, and HV 3 are connected to the tail CAV who responds to
them with gains 𝛽T,1 = 0.4, 𝛽T,2 = 0.5, 𝛽T,3 = 0.5 (while also responding to HV-4 based on range sensors). In panel (c), HVs
are connected to the head CAV who responds to them with controller gains 𝛽H,1 = 0.3, 𝛽H,2 = 0.2. 𝛽H,3 = 0.1, 𝛽H,4 = 0.1. In
all the three cases, the remaining controller gains are 𝛼H = 0.4, 𝛽H,d = 0.6, 𝛼T = 0.4, and 𝛽T,4 = 0.6. In panel (d), the stability
charts from panels (a)-(c) are compared.

to HVs (cf. panel (a)), red shows when the tail CAV looks ahead and connects to HVs (cf. panel (b)), and green corresponds
to when the head CAV looks behind and connects to HVs (cf. panel (c)). By connecting HVs to CAVs, the string stability
boundaries drift as the arrows show. In this numerical example, “look ahead” makes stabilization easier when cooperating the
two CAVs while “look behind” does not necessarily implicate that. For various communication topologies, there exists a large
overlap of the string stability regions, from which we can select the controller gains 𝛽H,T and 𝛽T,H to stabilize traffic.

IV. SAFETY-CRITICAL CONTROL

In this section, we first define the safety impact of the proposed cooperative CAV controllers (12) and (14), and then analyze
how the choice of controller gains affects the safety. Secondly, we utilize control barrier functions to design safety filters that
constrain control inputs in real-time for safety guarantees. This is realized by formulating and solving an optimization problem
that modifies the operation of potentially unsafe nominal controller designs.
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A. Longitudinal safety of CAVs and HVs

In longitudinal car-following control, safety refers to eliminating the risk of rear-end collision. We adopt surrogate safety
measures [44] to evaluate the risk of collision for CAVs and HVs in various traffic scenarios. To this end, we adopt the constant
time headway (CTH) safe spacing policy [54] for the safety definition of the CAVs and middle HVs. For a vehicle with speed
𝑣 and gap 𝑠, the CTH policy requires that the gap exceeds a minimum safe value which is the product of a safe time headway
𝜏 > 0 and the speed:

𝑠 ≥ 𝜏𝑣. (31)

For the head CAV, we set its safe time headway as 𝜏H > 0, and the CTH policy constraints its spacing 𝑠H and speed 𝑣H as:

𝑠H ≥ 𝜏H𝑣H. (32)

This yields a safe set, i.e., a set of states where the head CAV is considered to be safe:

CH = {x ∈ R𝑛 : ℎH (x) ≥ 0}, (33)

with the safety function ℎH being:

ℎH (x) = 𝑠H − 𝜏H𝑣H. (34)

To guarantee safety, the controller should be designed so that if the head CAV is safe initially then it stays safe for all future
time. That is, if x(0) ∈ CH, then x(𝑡) ∈ CH holds for all 𝑡 ≥ 0, which means that the safe set CH is forward invariant. For the
tail CAV, similarly, we take a safe time headway as 𝜏T > 0, and define its safe set as:

CT = {x ∈ R𝑛 : ℎT (x) ≥ 0}, (35)

with the safety function:

ℎT (x) = 𝑠T − 𝜏T𝑣T. (36)

We aim to ensure forward invariance of CT, i.e., if x(0) ∈ CT, then x(𝑡) ∈ CT for all 𝑡 ≥ 0. For HV 𝑖, we take its safe time
headway as 𝜏𝑖 , and the CTH spacing policy yields the safety function:

ℎ𝑖 (x) = 𝑠𝑖 − 𝜏𝑖𝑣𝑖 . (37)

Remark 5 (Safety evaluation). The safety function ℎ acts as a safety surrogate measurement, and a negative ℎ implies an
unsafe car-following scenario that has a higher risk of collision. When ℎ < 0, the gap 𝑠 may still be positive. A negative gap
𝑠 means that a severe collision has happened. In the following analysis, we refer to the CAVs or HVs as “safe” if ℎ ≥ 0.

B. Safety impact of the nominal controller

The forward invariance of the safe sets CH and CT for the mixed traffic system (3) is established using Nagumo’s theorem.

Lemma 1 (Nagumo’s theorem [34]). Consider the system:

¤x = 𝐹 (x), (38)

with state x ∈ R𝑛, safe set C, and safety function ℎ : R𝑛 → R such that ∇ℎ(x) ≠ 0 if ℎ(x) = 0. The system is safe w.r.t. C
(that is, C is forward invariant) if and only if:

¤ℎ(x) = ∇ℎ(x) · 𝐹 (x) ≥ 0 (39)

holds for all x ∈ R𝑛 satisfying ℎ(x) = 0.

Using condition (39) in Lemma 1, we determine the gains of the nominal controller (12) that ensure safety for the head
CAV. This is summarized in Theorem 2, whose proof is given in Appendix B.

Theorem 2 (Safety of the nominal head CAV controller). System (16) with the nominal controller (12) of the head CAV and
the range policy (15) is safe w.r.t. CH defined in (33)-(34), if 𝑣d, 𝑣H, 𝑣𝑖 , 𝑣T ∈ [0, 𝑣max], 𝑠H ∈ [𝑠st, 𝑠go], and if the controller
parameters satisfy 𝜅 ≤ 1/𝜏H and:

𝛼H ≥
(
|1 − 𝜏H𝛽H,d | + 𝜏H

∑︁
𝑖∈NH

|𝛽H,𝑖 | + 𝜏H |𝛽H,T |
)
𝑣max
𝑠st

. (40)

Remark 6 (Safe controller gains). The safety criterion (40) in Theorem 2 can be interpreted as follows. It provides safe choices
of controller gains 𝛼H and 𝛽H,d that are related to the adaptive cruise control term in (12):

𝑠st
𝑣max

𝛼H − |1 − 𝜏H𝛽H,d | ≥ 𝜏H

∑︁
𝑖∈NH

|𝛽H,𝑖 | + 𝜏H |𝛽H,T |. (41)
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Fig. 3: Safety charts in the space of control gains for the nominal controller (12)-(14). (a) Safe (𝛽H,d, 𝛼H) gains considering the
head CAV’s safety (with 𝛽T,H = 0, 𝛽H,𝑖 = 0, 𝛽T,𝑖 = 0, and safe time headway 𝜏H = 0.8 s); (b) safe (𝛽T,𝑁 , 𝛼T) gains associated
with the tail CAV’s safety (with 𝛽H,T = 0, 𝛽H,𝑖 = 0, 𝛽T,𝑖 = 0, and safe time headway 𝜏T = 0.8 s); (c) safe (𝛽T,𝑁 , 𝛼T) gains for
different 𝛽H,𝑖 HV feedback gains (with 𝛽H,T = 0, 𝛽T,H = 0, 𝛽T,𝑖 = 0); and (d) safe (𝛽H,T, 𝛽T,H) gains for the safety of both CAVs
(with 𝛽H,𝑖 = 0, 𝛽T,𝑖 = 0). The spacing policy 𝑉 (𝑠) is the same as in Fig. 2. The shaded region indicates the range of gains
that ensure safety for the respective CAVs based on Theorems 2 and 3. Notice that the gains of the nominal controller are
restricted if one intends to achieve provably safe behavior (i.e., 𝛼H and 𝛼T must be very high or 𝛽H,T and 𝛽T,H must be very
small). This motivates the introduction of safety filters to enforce safe behaviors by deviating from the nominal controller to
prevent safety violation.

It also gives a maximum safe CAV coordination gain 𝛽H,T as:

|𝛽H,T | ≤
𝑠st

𝑣max𝜏H
𝛼H −

���� 1
𝜏H

− 𝛽H,d

���� − ∑︁
𝑖∈NH

|𝛽H,𝑖 |. (42)

Such 𝛽H,T gain exists only if the right-hand side is non-negative. When 𝛽H,𝑖 = 0 and 𝛽H,d = 1/𝜏H, the right-hand side has the
maximum as 𝛼H𝑠st/(𝑣max𝜏H). Similarly, condition (40) also provides safe gains considering the feedback of HV states:∑︁

𝑖∈NH

|𝛽H,𝑖 | ≤
𝑠st

𝑣max𝜏H
𝛼H −

���� 1
𝜏H

− 𝛽H,d

���� − |𝛽H,T |, (43)

where the right-hand side should again be non-negative to ensure the existence of such 𝛽H,𝑖 . When 𝛽H,d = 1/𝜏H and 𝛽H,T = 0,
the right-hand side has the maximum as 𝛼H𝑠st/(𝑣max𝜏H).

To ensure safety for the tail CAV, the nominal controller (14) must satisfy similar criteria given in Theorem 3. The proof
of this theorem follows the same steps as for Theorem 2, hence it is omitted.

Theorem 3 (Safety of the nominal tail CAV controller). System (3) with the nominal controller (14) of the tail CAV and the
range policy (15) is safe w.r.t. CT defined in (35)-(36), if 𝑣d, 𝑣H, 𝑣𝑖 , 𝑣T ∈ [0, 𝑣max], 𝑠T ∈ [𝑠st, 𝑠go], and if the controller parameters
satisfy 𝜅 ≤ 1/𝜏T and:

𝛼T ≥
(
|1 − 𝜏T𝛽T,N | + 𝜏T

∑︁
𝑖∈NT

|𝛽T,𝑖 | + 𝜏T |𝛽T,H |
)
𝑣max
𝑠st

. (44)

The range of safe controller gains provided by Theorems 2 and 3 are depicted as safety charts in Fig. 3.

Remark 7 (Safety impact of CAV cooperation). The shaded domain in Fig. 3(a) shows the safe controller gains for the head
CAV in the (𝛽H,d, 𝛼H) space for various values of 𝛽H,T based on (40). It can be observed that including the cooperation with
the tail CAV (i.e., taking 𝛽H,T ≠ 0) makes the safety region shift towards higher 𝛼H gains. Similarly, Fig. 3(b) shows the safe
gains for the tail CAV in the (𝛽T,𝑁 , 𝛼T) space for various 𝛽T,H values based on (44). The same trend is showcased: the safety
region shifts up by including the cooperation with the head CAV (𝛽T,H ≠ 0).

Remark 8 (Safety impact of connecting HVs). We plot the safe ACC gains for the head CAV in Fig. 3(c). When the CAV
includes feedback from middle HVs, its safety region shifts up and requires larger 𝛼H. The effect of HV feedback on the tail
CAV safety is also similar, and we omit the corresponding figure.

Remark 9 (Trade-off between stability and safety). The cooperation between CAVs enhances stability as in Remark 3 but
makes it harder to guarantee safety as in Remark 7. This trade-off also exists in the connectivity of HVs. Based on Remark 4
and Fig. 2, the stability region grows by setting proper controller gains for the feedback of HV states. Meanwhile, Remark 8
shows that the selection of safe gains becomes more limited by connecting to HVs (i.e., the right-hand sides of (40) and (44)
increase for 𝛽H,𝑖 ≠ 0 and 𝛽T,𝑖 ≠ 0).
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Fig. 3(d) indicates the safe CAV cooperation gains in green in the (𝛽H,T, 𝛽T,H) space considering the safety of both CAVs.
We set 𝛼H = 1, 𝛼T = 1. We consider no HV connection, i.e., 𝛽H,𝑖 = 0, 𝛽T,𝑖 = 0, and we set 𝛽H,d = 1/𝜏H, 𝛽T,N = 1/𝜏T, which gives
the maximum range of safe CAV coordination gains 𝛽H,T and 𝛽T,H; see Remark 6. We also plot the string-stability region as the
red region. As Fig. 3(d) shows, the string stability region and safety region do not intersect. This highlights that guaranteeing
both stability and safety by the nominal controller (12)-(14) may not be possible. Furthermore, Fig. 3(a,b,c) also demonstrate
that cooperating CAVs require a very high 𝛼 gain for provable safety (for example, the blue curve in panel (a) shows that
the head CAV is safe only for 𝛼H > 5 when the CAV cooperation gain is set to 𝛽H,T = 0.5). Such high 𝛼 gain is undesired
and infeasible for practical CAV control applications. Experiments in [1] have shown that the gap-related controller gain 𝛼

is recommended to be smaller than 1. Therefore, these restrictions on the safe control gains motivate the modification of the
nominal controller (12)-(14) to actively enforce safety. This is discussed in the next subsections through the introduction of
CBF-based safety filters.

C. Preliminaries on CBFs

Control barrier functions provide a general tool to constrain the control input to ensure safety. We present the basics of
CBFs as follows. Consider an affine control system with state x ∈ R𝑛 and control input u ∈ R𝑚:

¤x = 𝑓 (x) + 𝑔(x)u, (45)

cf. (3), with controller u = 𝑘 (x) and initial condition x(0) = x0 ∈ R𝑛. If 𝑓 , 𝑔, and 𝑘 are locally Lipschitz, the system has a
unique solution x(𝑡), which we assume to exist for all 𝑡 ≥ 0. The system is safe if the solution stays in a safe set C, i.e,
x(𝑡) ∈ C holds for all 𝑡 ≥ 0 if x0 ∈ C. Let C be given by a continuously differentiable function ℎ : R𝑛 → R, cf. (33) and (35).

Definition 3 (Control Barrier Function [3]). Function ℎ is called a control barrier function for the system (45) on C if there
exists an extended class-K∞ function 𝛾 such that:

sup
u∈R𝑚

𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)u > −𝛾(ℎ(x)), ∀x ∈ C, (46)

with 𝐿 𝑓 ℎ(x) = ∇ℎ(x) · 𝑓 (x) and 𝐿𝑔ℎ(x) = ∇ℎ(x) · 𝑔(x).

The CBF is used to guarantee safety of the closed-loop system with a feedback controller 𝑘 : R𝑛 → R𝑚, u = 𝑘 (x) for (45).

Theorem 4 (Safety guarantee by CBF [3]). If function ℎ is a control barrier function for (45) on C, then any locally Lipschitz
continuous controller u = 𝑘 (x) satisfying:

𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)𝑘 (x) ≥ −𝛾(ℎ(x)), ∀x ∈ C, (47)

renders the set C forward invariant (safe), i.e, x(𝑡) ∈ C, ∀𝑡 ≥ 0 holds for the closed-loop system for all x0 ∈ C.

To control a system with formal safety guarantees, CBFs can be integrated with a pre-designed nominal controller such
as (12) or (14). In particular, a nominal controller u = 𝑘n (x) can be modified in a minimal way to synthesize a safety-critical
control input u = 𝑘 (x), by solving the quadratic program (QP):

𝑘 (x) = argmin
u∈R𝑚

∥u − 𝑘n (x)∥2,

s.t. 𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)u + 𝛾(ℎ(x)) ≥ 0,
(48)

that is also called as safety filter. When the control input is a scalar (i.e., u ∈ R) and 𝐿𝑔ℎ(x) < 0 for all x ∈ R𝑛, this safety
filter simplifies to the form:

𝑘 (x) = min
{
𝑘n (x),−

𝐿 𝑓 ℎ(x) + 𝛾(ℎ(x))
𝐿𝑔ℎ(x)

}
. (49)

D. Safety filter design for CAV, HV and platoon

While Theorems 2 and 3 provide conditions on the nominal CAV controllers (12) and (14) to ensure safety, now we utilize
CBFs to minimally modify these nominal controllers and obtain safety-critical controllers:

𝑢H = 𝑘H (x, 𝑣d),
𝑢T = 𝑘T (x),

(50)

based on real-time traffic states. We consider three types of safety: CAV safety, HV safety, and platoon safety.
CAV safety: CAV safety refers to that the two CAVs keep a safe gap behind their preceding vehicles by enforcing the CTH

policy. For the head CAV, the CBF ℎH in (34) gives constraints on the controller 𝑢H as:

𝐿 𝑓 ℎH (x, 𝑣d) + 𝐿𝑔HℎH (x)𝑢H ≥ −𝛾HℎH (x), (51)



12

cf. (47), with 𝐿 𝑓 ℎH (x, 𝑣d) = 𝑣d − 𝑣H, 𝐿𝑔HℎH (x) = −𝜏H, and 𝛾H > 0. This is equivalent to:

𝑢H ≤ 1
𝜏H

(𝑣d − 𝑣H) + 𝛾H

( 1
𝜏H
𝑠H − 𝑣H

)
. (52)

The right-hand side resembles the adaptive cruise control terms in the nominal controller (12). Based on (49), the safety filter
enforcing the head CAV’s safety is:

𝑘H (x, 𝑣d) = min
{
𝑘H,n (x, 𝑣d),

1
𝜏H

(𝑣d − 𝑣H) + 𝛾H

( 1
𝜏H
𝑠H − 𝑣H

)}
, (53)

where the nominal controller 𝑘H,n is given in (12). Similarly, the safety function ℎT of the tail CAV in (36) gives the constraint:

𝐿 𝑓 ℎT (x) + 𝐿𝑔TℎT (x)𝑢T ≥ −𝛾TℎT (x), (54)

with 𝐿 𝑓 ℎT (x) = 𝑣N − 𝑣T, 𝐿𝑔TℎT (x) = −𝜏T, and 𝛾T > 0, which is equivalent to:

𝑢T ≤ 1
𝜏T
(𝑣N − 𝑣T) + 𝛾T

( 1
𝜏T
𝑠T − 𝑣T

)
; (55)

cf. the ACC terms in (14). The corresponding safety filter that ensures the tail CAV’s safety is:

𝑘T (x) = min
{
𝑘T,n (x),

1
𝜏T
(𝑣N − 𝑣T) + 𝛾T

( 1
𝜏T
𝑠T − 𝑣T

)}
, (56)

with the nominal controller 𝑘T,n in (14).
HV safety: When a middle HV-𝑖 is connected to the head CAV, the CBF also enables the head CAV to improve the HV’s

safety. It is noted that here safe motions are enforced by car-following behaviors and therefore the head-CAV control input is
constrained to this purpose. We design constraints on the head CAV controller to ensure HV safety as follows. For the HV
safety function ℎ𝑖 in (37), we have that 𝐿𝑔ℎ𝑖 (x) =

[
0 0

]
, which means HV’s safety measure ℎ𝑖 does not directly constrain

any of the control inputs 𝑢H or 𝑢T due to the relative degree of the system. Thus, we introduce a CBF for HV-𝑖:

ℎ̄𝑖 (x) = ℎ𝑖 (x) − 𝜂𝑖ℎH (x), (57)

where 𝜂𝑖 > 0 is a parameter. Then we have 𝐿𝑔 ℎ̄𝑖 (x) =
[
𝜂𝑖𝜏H 0

]
, which provides a way to constrain the control input 𝑢H for

safety. Once ensuring both ℎH (x) ≥ 0 and ℎ̄𝑖 (x) ≥ 0, we have ℎ𝑖 (x) ≥ 0. The safety constraint from ℎ̄𝑖 is then:

𝐿 𝑓 ℎ̄𝑖 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑖 (x)𝑢H ≥ −𝛾𝑖 ℎ̄𝑖 (x), (58)

with 𝐿 𝑓 ℎ̄𝑖 (x, 𝑣d) = 𝑣𝑖−1 − 𝑣𝑖 − 𝜏𝑖𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , 𝑣𝑖−1 − 𝑣𝑖) − 𝜂𝑖 (𝑣d − 𝑣H), 𝐿𝑔H ℎ̄𝑖 (x) = 𝜂𝑖𝜏H, and 𝛾𝑖 > 0. Thus ℎ̄𝑖 gives a constraint on
the head CAV’s controller as:

𝑢H ≥ 1
𝜏H

(𝑣d − 𝑣H) + 𝛾𝑖

(
1
𝜏H
𝑠H − 𝑣H

)
+ 𝜏𝑖

𝜂𝑖𝜏H

(
𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , 𝑣𝑖−1 − 𝑣𝑖) −

1
𝜏𝑖
(𝑣𝑖−1 − 𝑣𝑖) − 𝛾𝑖

(
1
𝜏𝑖
𝑠𝑖 − 𝑣𝑖

))
. (59)

While the head CAV safety constraint (52) gives an upper bound on 𝑢H, the HV safety condition (59) sets a lower bound
on 𝑢H. These two bounds may conflict with each other, thus there may be no available controller to enforce the safety of both
the head CAV and the HVs. Therefore, we set the head CAV safety as a hard constraint and HV safety as soft constraints by
adding a relaxation term to the HV safety constraints. This leads to the following safety filter that ensures the safety of head
CAV while facilitating the safety of HVs:

𝑘H (x, 𝑣d) = argmin
𝑢H∈R,𝜎𝑖≥0

∥𝑢H − 𝑘H,n (x, 𝑣d)∥2 +
𝑁∑︁
𝑖=1

𝑝𝑖𝜎
2
𝑖

s.t. head CAV safety : 𝐿 𝑓 ℎH (x, 𝑣d) + 𝐿𝑔HℎH (x)𝑢H ≥ −𝛾HℎH (x),

HV safety :


𝐿 𝑓 ℎ̄1 (x, 𝑣d) + 𝐿𝑔H ℎ̄1 (x)𝑢H ≥ −𝛾1 ℎ̄1 (x) − 𝜎1,

...

𝐿 𝑓 ℎ̄𝑁 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑁 (x)𝑢H ≥ −𝛾𝑁 ℎ̄𝑁 (x) − 𝜎𝑁 ,

(60)

where 𝜎𝑖 represent the relaxation term and 𝑝𝑖 > 0 are penalty parameters for the relaxation. This type of controller was first
proposed for a single CAV in [54] which was called safety-critical traffic controller. If a HV is not connected to the head CAV,
the corresponding HV safety constraint shall be omitted from (60). If no HVs are connected to the head CAV, then all HV
safety constraints are dropped, and (60) reduces to (53).

Platoon safety: In the above design, to ensure the safety of each individual HV, the HV is required to connect to the head
CAV. If some HVs are non-connected, we propose to enforce platoon safety that constrains the overall length of the vehicle
platoon, i.e., the total gap between the two CAVs must exceed a minimum value. Since the two CAVs are connected, the gap
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Fig. 4: Region of (𝑢H, 𝑢T) control inputs that ensure the safety of both the head CAV using (52), the tail CAV using (55), and
the platoon using (63).

𝑠HT between them is available. The gap 𝑠HT can be expressed by 𝑠HT = 𝑠T +
∑𝑁

𝑖=1 𝑠𝑖 + 𝑙T +
∑𝑁

𝑖=1 𝑙𝑖 with 𝑙T and 𝑙𝑖 being the length
of the tail CAV and HV-𝑖, thus 𝑠HT is a function of the system state x. Based on 𝑠HT, we define the platoon safety function as:

ℎp (x) = 𝑠HT − 𝑙0 − 𝜏p (𝑣T − 𝑣H), (61)

where 𝑙0 > 0 is the base length of the platoon and 𝜏p > 0 is a parameter. The safety constraint constructed by ℎp is:

𝐿 𝑓 ℎp (x) + 𝐿𝑔ℎp (x)u ≥ −𝛾pℎp (x), (62)

with 𝐿 𝑓 ℎp (x) = 𝑣H − 𝑣T, 𝐿𝑔ℎ(x) =
[
𝜏p −𝜏p

]
, and 𝛾p > 0. This is equivalent to:

𝑢T − 𝑢H ≤ 1
𝜏p

(𝑣H − 𝑣T) + 𝛾p

(
1
𝜏p

(𝑠HT − 𝑙0) − (𝑣T − 𝑣H)
)
. (63)

The platoon safety constraint is of the form 𝑢T − 𝑢H ≤ 𝑢̄ with 𝑢̄ being the right-hand side of (63). Meanwhile, the safety of
the head CAV can be guaranteed by enforcing an upper bound on its control input 𝑢H in the form 𝑢H ≤ 𝑢̄H where 𝑢̄H is the
right-hand side of (52). The tail CAV’s safety can be guaranteed by a similar upper bound on its input 𝑢T as 𝑢T ≤ 𝑢̄T where
𝑢̄T is the right-hand side of (55). Fig. 4 illustrates these input constraints. Depending on the values of 𝑢̄H, 𝑢̄T, and 𝑢̄, there
are three possible cases, as shown by the three panels. In each case, there exists a feasibility region for the control inputs 𝑢H

and 𝑢T where the safety of both the head CAV, tail CAV, and platoon can be enforced simultaneously without relaxation (see
shaded domain). This is summarized by the following Lemma.

Lemma 2. There always exist 𝑢H ∈ R and 𝑢T ∈ R that satisfy three constraints: head CAV safety (52), tail CAV safety (55),
and platoon safety (63), for all x ∈ R𝑛 and 𝑣d ∈ R.

This finally leads to the following safety filter that ensures both CAV safety, HV safety (with relaxation), and platoon safety:

𝑘 (x, 𝑣d) = argmin
u∈R2 ,𝜎𝑖≥0

∥u − 𝑘n (x, 𝑣d)∥2 +
𝑁∑︁
𝑖=1

𝑝𝑖𝜎
2
𝑖

s.t. CAV safety :
{

𝐿 𝑓 ℎH (x, 𝑣d) + 𝐿𝑔HℎH (x)𝑢H ≥ −𝛾HℎH (x),
𝐿 𝑓 ℎT (x) + 𝐿𝑔TℎT (x)𝑢T ≥ −𝛾TℎT (x),

HV safety :


𝐿 𝑓 ℎ̄1 (x, 𝑣d) + 𝐿𝑔H ℎ̄1 (x)𝑢H ≥ −𝛾1 ℎ̄1 (x) − 𝜎1,

...

𝐿 𝑓 ℎ̄𝑁 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑁 (x)𝑢H ≥ −𝛾𝑁 ℎ̄𝑁 (x) − 𝜎𝑁 ,

Platoon safety : 𝐿 𝑓 ℎp (x) + 𝐿𝑔ℎp (x)𝑢 ≥ −𝛾pℎp (x).

(64)

It is noted that the platoon safety constraint depends on the inputs of both CAVs. Therefore, when this constraint is enforced,
the two control inputs 𝑢H and 𝑢T need to be computed together. If it is infeasible in practice to compute the control inputs of
two CAVs jointly, the platoon safety constraint shall be omitted from (64). This leads back to the controller (56) for the tail
CAV and the controller (60) for the head CAV which no longer depend on each other. The safety-critical controller (64) is a
QP, which can be solved efficiently for real-time application in practical traffic systems. The number of constraints in the QP
increases with the number of HVs. Considering the wireless communication range, there may be approximately at most ten
HVs between the two CAVs [29], which means a low computation burden to solve the QP.

Remark 10 (Look-ahead for stability and look-behind for safety). As discussed in Remark 3-4 regarding the stability chart in
Fig. 2, for string stability, the tail CAV must look ahead and include feedback from either the middle HVs or the head CAV.
As for HV safety, the head CAV should look behind and alter its controller using a safety filter based on the states of the HVs.
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Fig. 5: The head HV suddenly decelerates: simulated trajectory of mixed vehicle platoon. The nominal controllers (12), (14)
cause unsafe driving for the two CAVs, i.e., ℎH < 0 and ℎT < 0 occur. By using the proposed safety-critical controllers (53), (56)
with CBF, the two CAVs become safe with positive ℎH, ℎT. Besides, string stability is also maintained, i.e., 𝐼 < 1.
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Fig. 6: A middle HV suddenly decelerates: simulated trajectory of mixed vehicle platoon. Due to the deceleration of HV-4, the
tail CAV becomes unsafe when using the nominal controller, while the CBF guarantees safety.

V. NUMERICAL SIMULATION

In this section, we conduct a number of simulations to validate the safety and performance of the proposed safety-
critical controller (64). We first consider the case where no HVs are connected to the CAVs, and we discuss CAV safety
in subsection V-A. Then we consider connected HVs and HV safety in subsection V-B. Finally, we demonstrate the behavior
of the controller that enforces platoon safety in subsection V-C.

A. CAV safety guaranteed via CBF

We consider two safety-critical scenarios that may happen in mixed traffic and pose rear-end collision risks:
• The head HV suddenly decelerates. This will pose safety risks for the H-CAV, and possibly also for the T-CAV. This may

be caused in real traffic by an aggressive cut-in, pedestrian, or obstacles on the road. In the simulation, we set the head
HV’s acceleration profile as:

¤𝑣d =


−𝑎d, 𝑡 ∈ [2, 2 + Δ𝑣d/𝑎d],
𝑎d, 𝑡 ∈ (2 + Δ𝑣d/𝑎d, 2 + 2Δ𝑣d/𝑎d],
0, otherwise,

(65)

where 𝑎d is a constant deceleration, Δ𝑣d is its speed perturbation, and Δ𝑣d/𝑎d is the duration of deceleration.
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• One middle HV suddenly decelerates. This will pose safety risks for the T-CAV. We make the HV-𝑖 suddenly reduce its
speed by Δ𝑣𝑖 with a constant deceleration 𝑎𝑖 . The acceleration profile of HV-𝑖 is modified from (5) to:

¤𝑣𝑖 =
{
−𝑎𝑖 , 𝑡 ∈ [2, 2 + Δ𝑣𝑖/𝑎𝑖],
𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖), otherwise. (66)

Considering the physical limits of vehicle braking systems, we use saturated acceleration in the simulation, i.e., ¤𝑣𝑖 =

sat(𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖)), ¤𝑣H = sat(𝑢H), ¤𝑣T = sat(𝑢T), where the saturation function is

sat(𝑢) =

𝑢min, 𝑢 < 𝑢min,

𝑢, 𝑢min ≤ 𝑢 ≤ 𝑢max,

𝑢max, 𝑢 > 𝑢max,

(67)

with 𝑢max and 𝑢min being the maximum and minimum acceleration. In the simulation, we use 𝑢max = 7 m/s2 and 𝑢min = −7 m/s2.
For the nominal stabilizing controller, we consider CAV coordination gain as 𝛽H,T = 0.5 s−1 and 𝛽T,H = 1.2 s−1. We set the
safe time headway as 𝜏H = 0.8 s and 𝜏T = 0.8 s. For the CBF parameters, we use 𝛾H = 5 s−1 and 𝛾T = 5 s−1. The human-driver
model 𝐹𝑖 and the rest of the parameters are the same as in Section III-B.

Fig. 5 shows the simulated trajectories by using the nominal controller (12), (14) and the safety-critical controller (53), (56)
for the first scenario when the head HV suddenly decelerates from 𝑣∗ = 20 m/s to a stop with 𝑎d = 5 m/s2 and Δ𝑣d = 20 m/s.
The behavior of the nominal controller is shown in the top row. The CAVs stabilize the traffic by having a small deceleration
(see panels (c) and (d)), but this causes a collision between the head CAV and the head HV (see the negative gap along the
blue curve in panel (b)). Besides, the tail CAV also becomes unsafe in the sense that its safety function becomes negative
(see the red curve in panel (a)). The behavior of the safety-critical controller that includes CBF-based safety filter is shown in
the bottom row. Initially, when the head HV drives at the constant speed 𝑣∗, the safety-critical controller matches the nominal
controller since it satisfies the CBF constraints (52), (55). When the head HV begins to decelerate, the CBF is activated around
5 sec, and the head CAV has a larger deceleration than with the nominal controller (see panels (g) and (h)). This way the
head CAV successfully avoids collision (see the positive gap in panel (f)). The safety functions are kept positive throughout
the motion (see panel (e)), which indicates that both CAVs are safe.

Besides avoiding unsafe scenarios caused by the nominal controller, the safety-critical controller also maintains both plant
stability and head-to-tail string stability of the system. From the profiles of gap 𝑠 in the second column and speed 𝑣 in the
third column of Fig. 5, we observe plant stability as 𝑠 and 𝑣 converge to the equilibrium values 𝑠∗ and 𝑣∗ around 45 sec. To
evaluate head-to-tail string stability, we quantify the speed perturbations of the tail CAV relative to the head HV by:

𝐼 =

√︃∫ 𝑇

0 (𝑣T − 𝑣∗)2 d𝑡√︃∫ 𝑇

0 (𝑣d − 𝑣∗)2 d𝑡
, (68)

where 𝑇 = 50 sec is the total simulation length. By Definition 2, if 𝐼 < 1, then the system is head-to-tail string stable. After
incorporating the CBF, we have 𝐼 = 0.698 < 1. Therefore, by implementing CBF, the system is both string stable and safe.
Note that 𝐼 = 0.589 for the nominal controller, i.e., the value of 𝐼 is higher for the safety-critical controller. This means that
safety is achieved at the price of higher speed fluctuations (but without losing head-to-tail string stability).

In Fig. 6, we plot the profiles of the safety function, gap, speed, and acceleration when one middle HV suddenly decelerates.
We consider HV-4 to decelerate with 𝑎4 = 5 m/s2 and Δ𝑣4 = 20 m/s. As the top row of Fig. 6 shows, considering the nominal
controller (12), (14), the deceleration of HV-4 poses a safety risk for the tail CAV. Meanwhile, based on the bottom row, the
safety-critical controller (53), (56) with the CBF has a larger deceleration for the tail CAV to avoid collisions. In this scenario,
the safety-filtered controller still stabilizes, since the system converges to the equilibrium state after the perturbation of HV-4
(around 40 sec). We note that the head-to-tail string stability index in (68) is not applicable, since it concerns cases where the
head HV has a speed perturbation while in this scenario the head HV drives at a constant speed.

B. Connected HV safety and effect of HV connection

If a middle HV is connected to the head CAV, then the head CAV may facilitate the safety of this HV via the CBF constraint
in (58). We validate this HV safety constraint. We consider a scenario where one middle HV suddenly accelerates. This increases
the collision risk between the accelerating HV and its leader. We set HV-𝑖 to suddenly accelerate with the acceleration profile:

¤𝑣𝑖 =
{
𝑎𝑖 , 𝑡 ∈ [2, 2 + Δ𝑣𝑖/𝑎𝑖],
𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖), otherwise, (69)

with 𝑎𝑖 being a constant acceleration, and Δ𝑣𝑖 being the speed perturbation. We assume that the accelerating HV is HV-1,
which is connected to the head CAV, and the nominal controller of the head CAV (12) includes HV-1’s feedback with the
controller gain 𝛽H,1 = 0.1. The corresponding safety-critical controller of the head CAV is given by (60), where the HV-1
safety constraint with ℎ̄1 is included while the other HV safety constraints are omitted. We set the HV’s safe time headway
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Fig. 7: A middle HV suddenly accelerates: simulated trajectory of mixed vehicle platoon. The safety-critical controller (56), (60)
with the CBF guides the head CAV to accelerate so that collision between HV-1 and the head CAV is avoided.

as 𝜏1 = 1 s, and the CBF parameters as 𝛾1 = 5 s−1, 𝜂1 = 0.5, 𝑝1 = 100. Other parameters, including the tail CAV’s nominal
controller (14) and safety-critical controller (56), the saturation function, and the CBF parameters for the head and tail CAVs,
remain the same.

Fig. 7 plots the trajectories by the nominal controller (12), (14) and the safety-critical controller (56), (60) with 𝑎1 = 5 m/s2

and Δ𝑣1 = 3.5 m/s. The results with the nominal controller are shown in the top row. When HV-1 suddenly accelerates, the
head CAV also accelerates, but the gap between HV-1 and the head CAV still becomes too small, hence HV-1 is unsafe (see
negative ℎ1). By using the CBF, as shown in the bottom row, the head CAV generates a larger acceleration. This enlarges the
gap between HV-1 and the head CAV, and thus ensures safety (i.e., ℎ1 is positive for all time). In this scenario, the safety-filtered
controller still stabilizes, since the system converges to the equilibrium state around 25 sec.

Connectivity of HVs: Next, we investigate how the connectivity of HVs to CAVs affects the stability and safety of the
nominal controller. These simulations correspond to the stability results presented earlier in Fig. 2, which considered three
communication topologies: no HV connection, tail CAV connects to HVs (look ahead), and head CAV connects to HVs (look
behind). We investigate the behavior of the vehicle platoon for each communication topology in three simulation scenarios:
head HV decelerates, middle HV decelerates, and middle HV accelerates; corresponding to Figs. 5, 6 and 7.

The simulation results are shown in Fig. 8, where the top row presents the tail CAV’s speed, the bottom row shows the tail
CAV’s safety function, while the three columns correspond to the three simulation scenarios. Note that the safety functions
of the head CAV and middle HVs yield similar curves for each case, thus these plots are omitted. We see that for all three
scenarios looking behind has marginal effect on the results. At the same time, the tail CAV has a smoother speed by looking
ahead, which reduces perturbations for the upstream traffic. However, the tail CAV also has a higher risk for unsafe behavior
by looking ahead (i.e., the minimum of ℎT becomes smaller) compared to the case of no HV connection. This can be remedied
by using CBF-based safety filters, as it was demonstrated in Fig. 5.

C. Platoon safety

Finally, we investigate platoon safety, which requires that the gap between the two CAVs is greater than a safe minimum
value. While platoon safety does not refer to collision-based safety for a single vehicle, it prevents the gap between the two
CAVs from becoming too small and increases the safety of the overall platoon. On the other hand, this also enhances the
stability of traffic flow. To demonstrate this, we run simulations with the safety-critical controller (64) that enforces platoon
safety (while we omit the HV safety constraints). We consider the scenario of Fig. 5 where the head HV decelerates. We set
the vehicle length as 𝑙𝑖 = 5 m, and the regular length of the vehicle platoon as 𝑙0 = 100 m. We use 𝜏p = 1 s and 𝛾p = 5 s−1 to
enforce platoon safety. All other parameters remain the same as in Fig. 5.

Fig. 9 plots the simulated trajectories. Compared with the trajectories in Fig. 5, we see that the string stability index in
Fig. 9 reduces from 0.698 to 0.679, indicating that the tail CAV has smaller speed perturbations. Furthermore, the maximum
deceleration of the tail CAV is −5 m/s2 when platoon safety is not enforced (see Fig. 5(h)), while it is only −4 m/s2 by
enforcing platoon safety (see Fig. 9(d)). This is because the tail CAV begins to decelerate earlier when it intends to maintain
platoon safety, which results in milder deceleration and smoother motion.
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Fig. 8: Simulations of the nominal controller demonstrating the effect of HV connection on stability (first row) and safety
(second row). When the tail CAV connects to HVs (look ahead), it reduces its speed fluctuations but also hinders its safety
compared to the case of no connection. When the head CAV connects to HVs (look behind), it has marginal effect.
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Fig. 9: Simulated trajectories when the head HV suddenly decelerates and platoon safety is enforced by the two CAVs.
Enforcing platoon safety helps reduce the deceleration of the tail CAV compared to the case without platoon safety (Fig. 5).

VI. PERFORMANCE ANALYSIS

The main simulation results have validated that the proposed cooperative CAV controllers achieve both stability and safety,
and, therefore, provide an improvement over the nominal control design. We further analyze the performance of the controllers
for a wide range of parameters in this section and discuss the sensitivity and robustness of our design with respect to uncertain
human driver behaviors.

A. Comparison between different CAV control strategies
First, we compare the proposed CAV pair controller to mixed traffic controllers that have been designed with only one head

CAV: leading cruise control (LCC) from [46] and safety-critical traffic control (STC) from our previous work [54]. We show
stability and safety improvement brought by the CAV pair. We run simulations for LCC and STC under the setting of Fig. 5,
with the only difference that the tail CAV is replaced by a connected tail HV (i.e., the vehicle chain contains one head CAV
and five following HVs). For stability evaluation, we use the stability index 𝐼 defined in (68). A lower 𝐼 implies less speed
perturbation and more stable traffic. To evaluate safety, we define the safety index as:

𝐻 =

∫ 𝑇

0
min{ℎ(x(𝑡)), 0} d𝑡. (70)

𝐻 = 0 implies that the system remains safe, i.e., ℎ(x(𝑡)) ≥ 0. For a negative 𝐻, its value reflects the extent and duration
of the system being unsafe. We compare the safety index and stability index in Table I. Compared with LCC, the designed
nominal controller (12), (14) enhances both traffic stability and safety. Comparing STC with the proposed safety-critical
controller (53), (56), while they both guarantee system safety, the pair CAV controller has a lower speed perturbation.
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TABLE I: Stability and safety performance comparison between different CAV control strategies

One Head CAV CAV Pair
Leading cruise control [46] Safety-critical traffic control [54] Nominal control (12), (14) Safety-critical control (53), (56)

Safety index 𝐻 (m·s) −66.82 0 −38.21 0
Stability index 𝐼 0.810 0.882 0.589 0.698
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Fig. 10: Safety performance of the nominal controller and the safety-critical controller with CBF. The first and second row
gives results for the head and tail CAV, respectively. The first and second columns show the maximum speed perturbation Δ𝑣d
for the head HV so that the CAV remains safe by using the nominal controller and the CBF, respectively, considering various
controller gains (𝛽H,T, 𝛽T,H). The third and fourth columns provide the range of controller gains under which the CAV is safe
for a fixed speed perturbation Δ𝑣d. The grey and red area correspond to the nominal and safety-critical controller, respectively.

B. Trade-offs between stability and safety

Next, we consider the safety-critical controllers (53), (56) that enforce CAV safety only. We further investigate the effects of
safety filters on safety and stability by conducting simulations with various control gains (𝛽H,T, 𝛽T,H), considering the scenario
where the head HV suddenly decelerates. That is, the simulations in Fig. 5 are repeated with different gains.

Effect of CBF on safety: In theory, the safety-critical controllers guarantee safety with any nominal controller and in all
scenarios. However, safety guarantees hold for unbounded accelerations only. If the CBF requires too large acceleration or
deceleration, the CAV’s control input is saturated, and safety guarantees could be lost. We analyze how the nominal controller
and the safety-critical controller affect the two CAVs’ safety with saturated accelerations.

Fig. 10 presents simulation results with various controller gains (𝛽H,T, 𝛽T,H). The first and second columns plot the maximum
speed perturbation Δ𝑣d of the head HV for which the head and tail CAV remains safe. A darker color indicates that the CAV
is able to maintain safety at larger speed perturbations. Fig. 10(b) and (f) show that, by adding the CBF-based safety filters,
both the head and tail CAV remains safe for almost all controller gains even when the head HV decelerates to a full stop, i.e.,
Δ𝑣d = 20 m/s. The third and fourth columns present the range of controller gains (𝛽H,T, 𝛽T,H) that ensure the safety of the head
and tail CAVs for a fixed speed perturbation Δ𝑣d. Fig. 10(c) and (g) give the safety region for Δ𝑣d = 12 m/s. As the grey area
shows, the nominal controller can achieve safety for one of the CAVs with a limited choice of gains. However, by comparing
panels (c) and (g), it can be concluded that no gains can enable the nominal controller to ensure safety for both CAVs. As
opposed, by adding the CBF-based safety filters, both the head and tail CAVs remain safe for all considered (𝛽H,T, 𝛽T,H) gains,
as the red region shows. Fig. 10(d) and (h) gives the safety region for Δ𝑣d = 20 m/s. We note from Fig. 10(h) that all nominal
controllers fail to ensure the safety of the tail CAV (i.e., there is no grey region), while the CBF still guarantees its safety for
most (𝛽H,T, 𝛽T,H) pairs (see the red region). The unsafe domain (white region) is caused by the saturation of accelerations.

Effect of CBF on stability: As trajectories in Figs. 5, 6, and 7 show, the CBF may increase the acceleration or deceleration
of CAVs to avoid collisions, i.e., there is a trade-off between safety and stability. To evaluate the CBF’s effect on string stability
(traffic smoothness), we run simulations when the head HV decelerates (i.e., for the scenario of Fig. 5), and we calculate the
head-to-tail string stability index 𝐼 defined in (68). Fig. 11(a) and (b) depict the stability index obtained for the nominal and
safety-critical controllers using various (𝛽H,T, 𝛽T,H) controller gains. We see that after adding the CBF, we still have 𝐼 < 1 for
all gains. Thus, combining the safe region in Fig. 10 and the stability index in Fig. 11, we can conclude that the safety-critical
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Fig. 11: Stability performance of the nominal controller and the safety-critical controller with CBF. The first and second
columns show the head-to-tail string stability index 𝐼 defined in (68). A smaller 𝐼 implies that the tail CAV has smaller speed
perturbation, and thus the upstream traffic is smoother. With 𝐼 < 1, the mixed traffic system is considered head-to-tail string
stable. The third and fourth columns depict the average string stability index 𝐼 defined in (71). A smaller 𝐼 reflects that the
entire mixed vehicle platoon drives smoother on average. A darker color implies a smaller 𝐼 or 𝐼 and thus a smoother traffic.
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Fig. 12: Simulated trajectories with different numbers of middle HVs, 𝑁 . The proposed controller achieves both safe (ℎ ≥ 0)
and string stable (𝐼 < 1) driving for all considered 𝑁 .

controller (53), (56) achieves both safety and head-to-tail string stability.
Besides evaluating head-to-tail string stability, that characterizes the smoothness of the tail CAV’s motion, we also investigate

the smoothness of the overall mixed traffic considering all vehicles in the platoon. We define the average string stability index:

𝐼 =
1

𝑁 + 2
©­­«
√︃∫ 𝑇

0 (𝑣H − 𝑣∗)2 d𝑡√︃∫ 𝑇

0 (𝑣d − 𝑣∗)2 d𝑡
+

√︃∫ 𝑇

0 (𝑣T − 𝑣∗)2 d𝑡√︃∫ 𝑇

0 (𝑣d − 𝑣∗)2 d𝑡
+

𝑁∑︁
𝑖=1

√︃∫ 𝑇

0 (𝑣𝑖 − 𝑣∗)2 d𝑡√︃∫ 𝑇

0 (𝑣d − 𝑣∗)2 d𝑡

ª®®¬ . (71)

Fig. 11(c) and (d) plot 𝐼 for the nominal controller and the safety-critical controller. Similar to the head-to-tail string stability
index 𝐼, the average string stability index 𝐼 becomes higher when implementing CBFs, since the acceleration becomes larger
to maintain safety. Nevertheless, we still have 𝐼 < 1 for the safety-critical controller, which implies that perturbations from the
downstream traffic are attenuated by the platoon of two CAVs and 𝑁 middle HVs.
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Fig. 13: Stability charts under different HV model parameters 𝑎, 𝑏, 𝑠st, and 𝑠go. In each subfigure, we plot the stability
boundaries when one parameter changes with the other three parameters fixed. Each line gives a boundary of head-to-tail
string stability for a given parameter value. Each grey area shades the range of (𝛽H,T, 𝛽T,H) gains that lead to string stability for
the corresponding HV model parameter values. The red region is the overlap of string stability regions with varying parameters.
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Safety-critical controller with CBF and no robustness term
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Safety-critical controller with robust CBF
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Fig. 14: Simulated trajectories when one middle HV suddenly accelerates. When the human driver model used by the head
CAV’s control design is inaccurate, the CBF may fail to ensure HV safety. This can be remedied by using a robust CBF that
accounts for the human driver uncertainty.

C. Sensitivity to the CAV penetration rate

We analyze how the number of middle HVs, 𝑁 , affects the performance of the CAV controllers. Namely, how the CAV
penetration rate affects the stability and safety of mixed traffic. We repeat the simulations for the case where the head HV
decelerates as in Fig. 5, considering various 𝑁 values ranging from 1 to 10, with the corresponding penetration rate 𝑝 = 2/(𝑁+2)
ranging from 67% to 17%. Note that the vehicle-to-vehicle communication connecting the two CAVs has a limited range, and
10 middle HVs is approximately the maximum 𝑁 that can be covered by the communication range. Since the middle HVs
are assumed to be non-connected, the two CAVs do not respond to them, and the controller remains the same for different
numbers of middle HVs. We set all parameters except 𝑁 to be the same as in Fig. 5.

Fig. 12 shows the simulation results. The first row of Fig. 12 depicts the profiles of speed 𝑣H, 𝑣T under the nominal controller
and the safety-critical controller. We see that the nominal controller stabilizes the system for each 𝑁 , i.e., the system state
converges to the equilibrium once the head HV drives at the equilibrium speed 𝑣∗. With more middle HVs, however, it takes
more time to converge: the system gets close to the equilibrium around 20 sec for 𝑁 = 1, while it takes 40 sec for 𝑁 = 10.
As for string stability, Fig. 12(e) plots the string stability index 𝐼 as a function of 𝑁 . We observe that 𝐼 < 1 for all 𝑁 , i.e.,
the nominal controller achieves head-to-tail string stability. With the increase of 𝑁 , 𝐼 first decreases and then increases. This
means that the tail CAV performs best if the head CAV is a few vehicles ahead (𝑁 ≈ 4), which is consistent with the findings
in connected cruise control [35]. When the safety filter is implemented, the effect of the HV number on stability is similar.
From Fig. 12(b) and (d), the safety-critical controller still ensures plant stability, i.e., 𝑣 converges to 𝑣∗. As for string stability,
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as Fig. 12(e) shows, we still have 𝐼 < 1 for all 𝑁 , which means the system is still head-to-tail string stable with the CBF.
As for safety, we plot ℎH and ℎT in the second row of Fig. 12. For the nominal controller, both the head and tail CAV

become more unsafe when there are more middle HVs (i.e., the minimum of ℎ becomes smaller as 𝑁 increases and ℎ goes
below zero in each case in Fig. 12(f) and (h)). For the safety-critical controller, as Fig. 12(g) and (i) show, both the head CAV
and tail CAV maintain safety in the sense that ℎH ≥ 0 and ℎT ≥ 0. To summarize, by implementing CBF constraints, the mixed
vehicle platoon achieves safe and string stable driving.

D. Robustness to uncertainty of human driver behaviors

Finally, we study how the proposed controllers are affected by the uncertainty induced by human driver behaviors.
Robust stability with parameter uncertainty in the human driver models: We analyze how the stability performance of the

nominal controller is affected by the parameters of the human driver model. We consider the case where the two CAVs are
connected only to each other, and repeat the stability calculations in Fig. 2(a) with various HV parameters. There are four
parameters in the human driver model (30): sensitivity to desired speed 𝑎, sensitivity to leader’s speed 𝑏, stopping gap 𝑠st,
and free-driving gap 𝑠go. We have found that the plant stability boundaries only have small changes with different HV model
parameters. We depict the head-to-tail string stability region with different HV parameters in Fig. 13. In each subfigure, we plot
the string stability boundaries when one parameter changes while keeping the other three parameters the same as calibrated
in Section III-C. The overlap between the string stable regions associated with different HV parameters is shaded in red. The
red domain shows that there exists a large region of nominal controller gains that renders the system string stable even when
the human driver behavior is uncertain. Choosing gains from this region, therefore, provides robustness against human driver
uncertainty.

Robust safety with inaccurate human driver model: Finally, we study how safety can be guaranteed when the behavior of
human drivers is uncertain. We note that the safety constraints of the head CAV (52), tail CAV (55), and platoon (63) do
not depend on the human driver model. Therefore, CAV safety and platoon safety can be enforced even if the human-driver
model is unknown or inaccurate. The human driver uncertainty only affects the HV safety (59). Below we outline a method
to provide robust safety guarantees for HVs even with uncertain human driver model.

Recall that the uncertainty of the human driver model can be captured by a disturbance 𝑑𝑖 in (5) that represents the
error between the actual acceleration ¤𝑣𝑖 and its model 𝐹𝑖 . If the disturbance has a known upper bound 𝑑𝑖 , i.e., |𝑑𝑖 | = | ¤𝑣𝑖 −
𝐹𝑖 (𝑠𝑖 , 𝑣𝑖 , ¤𝑠𝑖) | ≤ 𝑑𝑖 , then the HV safety constraint (58) can be modified based on robust CBF theory [24] to the robust constraint:

𝐿 𝑓 ℎ̄𝑖 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑖 (x)𝑢H − 𝜏𝑖𝑑𝑖 ≥ −𝛾𝑖 ℎ̄𝑖 (x). (72)

This leads to safety guarantees for HVs even with model uncertainty, which is established in Theorem 5 in Appendix B.
We validate this robust CBF by simulations for the scenario of one middle HV suddenly accelerating. We compare simulations

with the nominal controller (12), (14); the safety-critical controller (56), (60); and the robust safety-critical controller where
the constraints in (60) are replaced by (72). We take the calibrated HV model 𝐹𝑖 from the previous simulations in Fig. 7, and
we use this model to calculate the left-hand side of the safety constraint (58) and the robust safety constraint (72). Then, we
simulate the vehicle platoon considering HVs with different parameters: 𝑎 = 0.2, 𝑏 = 0.6, 𝑠st = 8 m, and 𝑠go = 40 m. The
remaining simulation parameters, including the nominal controller gains, CBF parameters, and HV acceleration settings, are
the same as in Fig. 7. Fig. 14 shows the simulated trajectories by the nominal controller, CBF constraint (58), and robust CBF
constraint (72) with 𝑑𝑖 = 5 m/s2. The robust CBF maintains HV safety, while the other two controllers fail to do so.

VII. CONCLUSION

In this paper, we coordinate a pair of CAVs traveling amongst HVs in mixed traffic. Feedback controllers are designed for
the two CAVs to utilize CAV cooperation and, possibly, connected HV feedback. Stability and safety conditions are derived
for the controller gains, and the effect of CAV coordination and HV connection on stability and safety is analyzed. We find
that both CAV coordination and HV connection have opposite effects on stability and safety: including CAV cooperation or
HV connection makes it easier to stabilize traffic but harder to maintain safety. To overcome this trade-off, safety filters are
designed using control barrier functions considering CAV safety, HV safety, and platoon safety. The controller performance is
analyzed via numerical simulations. With the proposed controller, the mixed vehicle platoon travels safely and also mitigates
perturbations from downstream traffic. Future extensions of this research include designing robust controllers under V2V
communication failure, considering lateral movement, and evaluating the controller from more perspectives such as comfort
and fuel consumption.

APPENDIX A
STABILITY ANALYSIS

This Appendix provides the mathematical background required for the stability analysis in Section III, including the derivation
of the linearized dynamics in (19) and the corresponding head-to-tail transfer function 𝐺.
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A. Linearized dynamics

We first derive the linearized dynamics (19). Considering the perturbations around the equilibrium as in (18), the dynamics
are as follows. For middle HV-𝑖, by linearizing (4)-(5), we obtain:

¤̃𝑠𝑖 = 𝑣̃𝑖−1 − 𝑣̃𝑖 , (A.1)
¤̃𝑣𝑖 = 𝑎𝑖1𝑠𝑖 − 𝑎𝑖2𝑣̃𝑖 + 𝑎𝑖3𝑣̃𝑖−1, (A.2)

where the coefficients are 𝑎𝑖1 =
𝜕𝐹𝑖

𝜕𝑠𝑖
(𝑠∗

𝑖
, 𝑣∗, 0), 𝑎𝑖2 =

𝜕𝐹𝑖

𝜕 ¤𝑠𝑖 (𝑠
∗
𝑖
, 𝑣∗, 0) − 𝜕𝐹𝑖

𝜕𝑣𝑖
(𝑠∗

𝑖
, 𝑣∗, 0), and 𝑎𝑖3 =

𝜕𝐹𝑖

𝜕 ¤𝑠𝑖 (𝑠
∗
𝑖
, 𝑣∗, 0). For the head CAV,

the linearization of (6)-(7) leads to:

¤̃𝑠H = 𝑣̃d − 𝑣̃H, (A.3)
¤̃𝑣H = 𝜉H𝑠H − 𝜂H𝑣̃H + 𝛽H,d𝑣̃d +

∑︁
𝑖∈NH

𝛽H,𝑖 𝑣̃𝑖 + 𝛽H,T, (A.4)

with 𝜉H = 𝛼H𝑉
′
H (𝑠∗H) and 𝜂H = 𝛼H + 𝛽H,d +

∑
𝑖∈NH 𝛽H,𝑖 + 𝛽H,T. For the tail CAV, linearizing (8)-(9) yields:

¤̃𝑣T = 𝑠N − 𝑠T, (A.5)
¤̃𝑣T = 𝜉T𝑠T − 𝜂T𝑣̃T + 𝛽T,N𝑣̃N +

∑︁
𝑖∈NT

𝛽T,𝑖 𝑣̃𝑖 + 𝛽T,H𝑣̃H, (A.6)

with 𝜉T = 𝛼T𝑉
′
T (𝑠∗T) and 𝜂T = 𝛼T + 𝛽T,N +

∑
𝑖∈NT 𝛽T,𝑖 + 𝛽T,H.

The linearized dynamics can be written compactly as system (19), where the matrices 𝐴 and 𝐵 are:

𝐴 =



0 −1 0 0 0 0 · · · 0 0 0 0
𝜉H −𝜂H 0 𝛽H,1 0 𝛽H,2 · · · 0 𝛽H,N 0 𝛽H,T

0 1 0 −1 0 0 · · · 0 0 0 0
0 𝑎13 𝑎11 −𝑎12 0 0 · · · 0 0 0 0
0 0 0 1 0 −1 · · · 0 0 0 0
0 0 0 𝑎23 𝑎21 −𝑎22 · · · 0 0 0 0

. . .

0 0 0 0 0 0 · · · 0 1 0 −1
0 𝛽T,H 0 𝛽T,1 0 𝛽T,2 · · · 0 𝛽T,N 𝜉T −𝜂T


, 𝐵 =



1
𝛽H,d

0
0
0
...

0
0


. (A.7)

B. Derivation of the transfer function

We derive the head-to-tail transfer function 𝐺 (𝑠) as follows. For each middle HV-𝑖, we take the Laplace transform of the
linearized dynamics (A.1)-(A.2) considering zero initial conditions:

𝑠𝑆𝑖 = 𝑉𝑖−1 −𝑉𝑖 , (A.8)

𝑠𝑉𝑖 = 𝑎𝑖1𝑆𝑖 − 𝑎𝑖2𝑉𝑖 + 𝑎𝑖3𝑉𝑖−1, (A.9)

where 𝑆 and 𝑉 denote the Laplace transforms of 𝑠 and 𝑣̃ (with the corresponding subscript). This gives the relationship between
𝑉𝑖−1 and 𝑉𝑖 as:

𝑉𝑖 =
𝑎𝑖3𝑠 + 𝑎𝑖1

𝑠2 + 𝑎𝑖2𝑠 + 𝑎𝑖1
𝑉𝑖−1. (A.10)

Considering that 𝑉0 = 𝑉H, we express each 𝑉𝑖 from 𝑉H as:

𝑉𝑖 = Ω𝑖𝑉H, (A.11)

with Ω𝑖 =
∏𝑖

𝑗=1
𝑎 𝑗3𝑠+𝑎 𝑗1

𝑠2+𝑎 𝑗2𝑠+𝑎 𝑗1
. Note that Ω𝑖 = 𝑃𝑖/𝑃0 based on (24).

For the head CAV, we have the Laplace transform of the linearized dynamics (A.3)-(A.4) as:

𝑠𝑆H = 𝑉d −𝑉H, (A.12)

𝑠𝑉H = 𝜉H𝑆H − 𝜂H𝑉H + 𝛽H,d𝑉d +
∑︁
𝑖∈NH

𝛽H,𝑖𝑉𝑖 + 𝛽H,T𝑉T, (A.13)

which gives:

𝑉H =
(𝛽H,d𝑠 + 𝜉H)𝑉d + 𝛽H,T𝑠𝑉T +

∑
𝑖∈NH 𝛽H,𝑖𝑠𝑉𝑖

𝑠2 + 𝜂H𝑠 + 𝜉H
. (A.14)
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By substituting 𝑉𝑖 from (A.11), we obtain:

𝑉H =
(𝛽H,d𝑠 + 𝜉H)𝑉d + 𝛽H,T𝑠𝑉T

𝑠2 + 𝜂H𝑠 + 𝜉H −
∑

𝑖∈NH 𝛽H,𝑖𝑠Ω𝑖

. (A.15)

For the tail CAV, taking the Laplace transform of the linearized dynamics (A.5)-(A.6) leads to:

𝑠𝑆T = 𝑉N −𝑉T, (A.16)

𝑠𝑉T = 𝜉T𝑆T − 𝜂T𝑉T + 𝛽T,N𝑉N +
∑︁
𝑖∈NT

𝛽T,𝑖𝑉𝑖 + 𝛽T,H𝑉H, (A.17)

which gives:

𝑉T =
𝛽T,H𝑠𝑉H + (𝛽T,N𝑠 + 𝜉T)𝑉N +

∑
𝑖∈NT 𝛽T,𝑖𝑠𝑉𝑖

𝑠2 + 𝜂T𝑠 + 𝜉T
. (A.18)

By substituting 𝑉𝑖 from (A.11), we get:

𝑉H =
(𝑠2 + 𝜂T𝑠 + 𝜉T)𝑉T

𝛽T,H𝑠 + (𝛽T,N𝑠 + 𝜉T)ΩN +
∑

𝑖∈NT 𝛽T,𝑖𝑠Ω𝑖

. (A.19)

Equating (A.15) and (A.19) leads to:

(𝛽H,d𝑠 + 𝜉H)𝑉d + 𝛽H,T𝑠𝑉T

𝑠2 + 𝜂H𝑠 + 𝜉H −
∑

𝑖∈NH 𝛽H,𝑖𝑠Ω𝑖

=
(𝑠2 + 𝜂T𝑠 + 𝜉T)𝑉T

𝛽T,H𝑠 + (𝛽T,N𝑠 + 𝜉T)ΩN +
∑

𝑖∈NT 𝛽T,𝑖𝑠Ω𝑖

. (A.20)

This can be rearranged to obtain the head-to-tail transfer function defined in (20):

𝐺 (𝑠) =
(𝛽H,d𝑠 + 𝜉H) (𝛽T,H𝑠 + (𝛽T,N𝑠 + 𝜉T)ΩN +

∑
𝑖∈NT 𝛽T,𝑖𝑠Ω𝑖)(

𝑠2 + 𝜂H𝑠 + 𝜉H −
∑

𝑖∈NH 𝛽H,𝑖𝑠Ω𝑖

)
(𝑠2 + 𝜂T𝑠 + 𝜉T) − 𝛽H,T𝑠(𝛽T,H𝑠 + (𝛽T,N𝑠 + 𝜉T)ΩN +

∑
𝑖∈NT 𝛽T,𝑖𝑠Ω𝑖)

. (A.21)

Since Ω𝑖 = 𝑃𝑖/𝑃0 based on (24), we multiply both the numerator and denominator by 𝑃0, and we get (21)-(23).

APPENDIX B
SAFETY ANALYSIS

In this Appendix, we first prove Theorem 2 that provides safe controller gains for the nominal controller in Section IV.
Then, we establish robust CBF constraints for HV safety, which are utilized in (72) in Section VI.

A. Proof of Theorem 2

Proof. We prove safety based on Lemma 1, by showing that ¤ℎH (x, 𝑣d) ≥ 0 holds if ℎH (x) = 0. We express ¤ℎH (x, 𝑣d):
¤ℎH (x, 𝑣d) = 𝑣d − 𝑣H − 𝜏H𝑢H, (B.1)

where we substitute the nominal controller 𝑢H = 𝑘H,n (x, 𝑣d) from (12):

¤ℎH (x, 𝑣d) = 𝑣d − 𝑣H − 𝜏H

(
𝛼H (𝑉H (𝑠H) − 𝑣H) + 𝛽H,d (𝑊 (𝑣d) − 𝑣H) +

∑︁
𝑖∈NH

𝛽H,𝑖 (𝑊 (𝑣𝑖) − 𝑣H) + 𝛽H,T (𝑊 (𝑣T) − 𝑣H)
)
. (B.2)

Then, we consider 𝑣d, 𝑣H, 𝑣𝑖 , 𝑣T ∈ [0, 𝑣max], 𝑠H ∈ [𝑠st, 𝑠go], and we substitute 𝑊 and 𝑉H from (13) and (15):

¤ℎH (x, 𝑣d) = 𝑣d − 𝑣H − 𝜏H

(
𝛼H

(
𝜅(𝑠H − 𝑠st) − 𝑣H

)
+ 𝛽H,d (𝑣d − 𝑣H) +

∑︁
𝑖∈NH

𝛽H,𝑖 (𝑣𝑖 − 𝑣H) + 𝛽H,T (𝑣T − 𝑣H)
)
. (B.3)

Next, we rearrange the terms and consider ℎH (x) = 0, that is, 𝑠H = 𝜏H𝑣H:

¤ℎH (x, 𝑣d) = (1 − 𝜏H𝛽H,d) (𝑣d − 𝑣H) − 𝛼H

(
𝜅𝜏H (𝑠H − 𝑠st) − 𝑠H

)
− 𝜏H

( ∑︁
𝑖∈NH

𝛽H,𝑖 (𝑣𝑖 − 𝑣H) + 𝛽H,T (𝑣T − 𝑣H)
)
. (B.4)

Since 𝑣d, 𝑣H, 𝑣𝑖 , 𝑣T ∈ [0, 𝑣max], we have |𝑣d − 𝑣H | ≤ 𝑣max, |𝑣𝑖 − 𝑣H | ≤ 𝑣max, and |𝑣T − 𝑣H | ≤ 𝑣max. Furthermore, since 𝑠H ∈ [𝑠st, 𝑠go]
and 𝜅 ≤ 1/𝜏H, we have 𝜅𝜏H (𝑠H − 𝑠st) − 𝑠H ≤ −𝑠st. Substituting these and using 𝛼H ≥ 0 leads to:

¤ℎH (x, 𝑣d) ≥ −|1 − 𝜏H𝛽H,d |𝑣max + 𝛼H𝑠st − 𝜏H

( ∑︁
𝑖∈NH

|𝛽H,𝑖 | + |𝛽H,T |
)
𝑣max. (B.5)

Finally, substituting (40) leads to ¤ℎH (x, 𝑣d) ≥ 0 which completes the proof. □
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B. Robust CBF constraints for HV safety

Finally, we discuss how the head CAV’s controller may ensure HV safety when the human driver model is inaccurate, which
is captured by nonzero disturbance d ≠ 0 in (3) and 𝑑𝑖 ≠ 0 in (5). To this end, we briefly discuss robust safety-critical control
for systems with disturbance, based on robust CBF theory [24].

Consider system (45) with an additive disturbance d ∈ D ⊂ R𝑛:

¤x = 𝑓 (x) + 𝑔(x)u + d, (B.6)

cf. (3). Analogously to (47) in Theorem 4, it can be stated that controllers u = 𝑘 (x) satisfying:

𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)𝑘 (x) + ∇ℎ(x) · d ≥ −𝛾(ℎ(x)), ∀x ∈ C, ∀d ∈ D, (B.7)

render the set C forward invariant (safe) for the corresponding closed-loop system with disturbance. The difficulty of satisfying
this constraint is that the disturbance d may be unknown. However, if the disturbance has a known bound d̄ > 0, that is, if
∥d∥∞ ≤ d̄ holds, then robust CBF theory provides the following sufficient condition for a safe controller [24]:

𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)𝑘 (x) − ∥∇ℎ(x)∥d̄ ≥ −𝛾(ℎ(x)), ∀x ∈ C, (B.8)

which implies that (B.7) holds.
In the context of guaranteeing HV safety, the following modification of (58) can be used as robust CBF constraint.

Theorem 5 (Robust HV safety with bounded HV model error). Consider system (3) with disturbance given in (10). Assume
that there is a known bound 𝑑𝑖 ∈ R for the disturbance 𝑑𝑖 , i.e., |𝑑𝑖 | ≤ 𝑑𝑖 . If the controller of the head CAV satisfies (51) and:

𝐿 𝑓 ℎ̄𝑖 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑖 (x)𝑢H − 𝜏𝑖𝑑𝑖 ≥ −𝛾𝑖 ℎ̄𝑖 (x), (B.9)

with 𝛾𝑖 > 0 and ℎ̄𝑖 defined in (57), then HV-𝑖 is safe w.r.t. the CTH policy defined in (37).

Proof. Considering the system (3) and (10) with the safety function ℎ̄𝑖 in (57), the CBF constraint corresponding to (B.7) is:

𝐿 𝑓 ℎ̄𝑖 (x, 𝑣d) + 𝐿𝑔H ℎ̄𝑖 (x)𝑢H +
𝜕ℎ̄𝑖

𝜕𝑣𝑖
𝑑𝑖 ≥ −𝛾𝑖 ℎ̄𝑖 (x), (B.10)

where 𝜕ℎ̄𝑖
𝜕𝑣𝑖

= −𝜏𝑖 . Since the disturbance 𝑑𝑖 is upper bounded by 𝑑𝑖 , we have 𝜕ℎ̄𝑖
𝜕𝑣𝑖

𝑑𝑖 ≥ −𝜏𝑖𝑑𝑖 . Therefore, (B.9) implies (B.10) and
leads to a sufficient condition for guaranteeing safety w.r.t. ℎ̄𝑖 , analogously to (B.8). Furthermore, (51) ensures safety w.r.t. ℎH

defined in (34). Based on (57), ensuring both ℎH (x) ≥ 0 and ℎ̄𝑖 (x) ≥ 0 implies ℎ𝑖 (x) ≥ 0, which means safety w.r.t. the CTH
policy defined in (37). □

Remark 11 (Effect of HV model error on safety constraints). Compared with the HV safety constraint (58), the robust HV
safety constraint (B.9) has an extra safety margin term 𝜏𝑖𝑑𝑖 , which accounts for the human model error. The safety margin
is proportional to the model error 𝑑𝑖 , which means a less accurate human driver model will cause a more aggressive control
strategy. Specifically, when 𝑑𝑖 = 0, the robust safety constraint (B.9) becomes the same as the original safety constraint (58).
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[23] Chaozhe R. He and Gábor Orosz. Safety guaranteed connected cruise control. In 21st International Conference on Intelligent Transportation Systems,
pages 549–554, 2018.

[24] Mrdjan Jankovic. Robust control barrier functions for constrained stabilization of nonlinear systems. Automatica, 96:359–367, 2018.
[25] I Ge Jin, Sergei S Avedisov, Chaozhe R He, Wubing B Qin, Mehdi Sadeghpour, and Gábor Orosz. Experimental validation of connected automated
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[26] Li Jin, Mladen Čičić, Karl H Johansson, and Saurabh Amin. Analysis and design of vehicle platooning operations on mixed-traffic highways. IEEE

Transactions on Automatic Control, 66(10):4715–4730, 2020.
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